These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 25493881)
1. Analytical asymptotic velocities in linear Richtmyer-Meshkov-like flows. Cobos Campos F; Wouchuk JG Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Nov; 90(5-1):053007. PubMed ID: 25493881 [TBL] [Abstract][Full Text] [Related]
2. Analytical scalings of the linear Richtmyer-Meshkov instability when a rarefaction is reflected. Cobos-Campos F; Wouchuk JG Phys Rev E; 2017 Jul; 96(1-1):013102. PubMed ID: 29347243 [TBL] [Abstract][Full Text] [Related]
3. Richtmyer-Meshkov instability: theory of linear and nonlinear evolution. Nishihara K; Wouchuk JG; Matsuoka C; Ishizaki R; Zhakhovsky VV Philos Trans A Math Phys Eng Sci; 2010 Apr; 368(1916):1769-807. PubMed ID: 20211883 [TBL] [Abstract][Full Text] [Related]
4. Analytical scalings of the linear Richtmyer-Meshkov instability when a shock is reflected. Campos FC; Wouchuk JG Phys Rev E; 2016 May; 93(5):053111. PubMed ID: 27300982 [TBL] [Abstract][Full Text] [Related]
5. Normal velocity freeze-out of the Richtmyer-Meshkov instability when a rarefaction is reflected. Wouchuk JG; Sano T Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):023005. PubMed ID: 25768595 [TBL] [Abstract][Full Text] [Related]
6. Nonlinear evolution of an interface in the Richtmyer-Meshkov instability. Matsuoka C; Nishihara K; Fukuda Y Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Mar; 67(3 Pt 2):036301. PubMed ID: 12689159 [TBL] [Abstract][Full Text] [Related]
7. Analytical linear theory for the interaction of a planar shock wave with a two- or three-dimensional random isotropic density field. Huete Ruiz de Lira C; Velikovich AL; Wouchuk JG Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 2):056320. PubMed ID: 21728660 [TBL] [Abstract][Full Text] [Related]
8. Analytical linear theory for the interaction of a planar shock wave with an isotropic turbulent vorticity field. Wouchuk JG; Huete Ruiz de Lira C; Velikovich AL Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jun; 79(6 Pt 2):066315. PubMed ID: 19658602 [TBL] [Abstract][Full Text] [Related]
9. Normal velocity freeze-out of the Richtmyer-Meshkov instability when a shock is reflected. Wouchuk JG; Nishihara K Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Aug; 70(2 Pt 2):026305. PubMed ID: 15447586 [TBL] [Abstract][Full Text] [Related]
11. Growth rate of the linear Richtmyer-Meshkov instability when a shock is reflected. Wouchuk JG Phys Rev E Stat Nonlin Soft Matter Phys; 2001 May; 63(5 Pt 2):056303. PubMed ID: 11415002 [TBL] [Abstract][Full Text] [Related]
12. Analytical linear theory for the interaction of a planar shock wave with a two- or three-dimensional random isotropic acoustic wave field. Huete C; Wouchuk JG; Velikovich AL Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 2):026312. PubMed ID: 22463322 [TBL] [Abstract][Full Text] [Related]
13. Physics of reshock and mixing in single-mode Richtmyer-Meshkov instability. Schilling O; Latini M; Don WS Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Aug; 76(2 Pt 2):026319. PubMed ID: 17930154 [TBL] [Abstract][Full Text] [Related]
14. Computational parametric study of a Richtmyer-Meshkov instability for an inclined interface. McFarland JA; Greenough JA; Ranjan D Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Aug; 84(2 Pt 2):026303. PubMed ID: 21929086 [TBL] [Abstract][Full Text] [Related]
16. Richtmyer-Meshkov instability of a flat interface subjected to a rippled shock wave. Zou L; Liu J; Liao S; Zheng X; Zhai Z; Luo X Phys Rev E; 2017 Jan; 95(1-1):013107. PubMed ID: 28208332 [TBL] [Abstract][Full Text] [Related]
17. Critical magnetic field strength for suppression of the Richtmyer-Meshkov instability in plasmas. Sano T; Inoue T; Nishihara K Phys Rev Lett; 2013 Nov; 111(20):205001. PubMed ID: 24289690 [TBL] [Abstract][Full Text] [Related]
18. Effects of surface tension and viscosity on the growth rates of Rayleigh-Taylor and Richtmyer-Meshkov instabilities. Sohn SI Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 2):055302. PubMed ID: 20365034 [TBL] [Abstract][Full Text] [Related]
19. Numerical study of initial perturbation effects on Richtmyer-Meshkov instability in nonuniform flows. Xiao JX; Bai JS; Wang T Phys Rev E; 2016 Jul; 94(1-1):013112. PubMed ID: 27575222 [TBL] [Abstract][Full Text] [Related]
20. Spontaneous acoustic emission of a corrugated shock wave in the presence of a reflecting surface. Wouchuk JG; López Cavada J Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Oct; 70(4 Pt 2):046303. PubMed ID: 15600515 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]