BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

2864 related articles for article (PubMed ID: 25494202)

  • 1. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex.
    Konermann S; Brigham MD; Trevino AE; Joung J; Abudayyeh OO; Barcena C; Hsu PD; Habib N; Gootenberg JS; Nishimasu H; Nureki O; Zhang F
    Nature; 2015 Jan; 517(7536):583-8. PubMed ID: 25494202
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-resolution interrogation of functional elements in the noncoding genome.
    Sanjana NE; Wright J; Zheng K; Shalem O; Fontanillas P; Joung J; Cheng C; Regev A; Zhang F
    Science; 2016 Sep; 353(6307):1545-1549. PubMed ID: 27708104
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-term dual-color tracking of genomic loci by modified sgRNAs of the CRISPR/Cas9 system.
    Shao S; Zhang W; Hu H; Xue B; Qin J; Sun C; Sun Y; Wei W; Sun Y
    Nucleic Acids Res; 2016 May; 44(9):e86. PubMed ID: 26850639
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dose-dependent activation of gene expression is achieved using CRISPR and small molecules that recruit endogenous chromatin machinery.
    Chiarella AM; Butler KV; Gryder BE; Lu D; Wang TA; Yu X; Pomella S; Khan J; Jin J; Hathaway NA
    Nat Biotechnol; 2020 Jan; 38(1):50-55. PubMed ID: 31712774
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-resolution mapping of cancer cell networks using co-functional interactions.
    Boyle EA; Pritchard JK; Greenleaf WJ
    Mol Syst Biol; 2018 Dec; 14(12):e8594. PubMed ID: 30573688
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gene Networks with Transcriptional Bursting Recapitulate Rare Transient Coordinated High Expression States in Cancer.
    Schuh L; Saint-Antoine M; Sanford EM; Emert BL; Singh A; Marr C; Raj A; Goyal Y
    Cell Syst; 2020 Apr; 10(4):363-378.e12. PubMed ID: 32325034
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly efficient Cas9-mediated transcriptional programming.
    Chavez A; Scheiman J; Vora S; Pruitt BW; Tuttle M; P R Iyer E; Lin S; Kiani S; Guzman CD; Wiegand DJ; Ter-Ovanesyan D; Braff JL; Davidsohn N; Housden BE; Perrimon N; Weiss R; Aach J; Collins JJ; Church GM
    Nat Methods; 2015 Apr; 12(4):326-8. PubMed ID: 25730490
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds.
    Zalatan JG; Lee ME; Almeida R; Gilbert LA; Whitehead EH; La Russa M; Tsai JC; Weissman JS; Dueber JE; Qi LS; Lim WA
    Cell; 2015 Jan; 160(1-2):339-50. PubMed ID: 25533786
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis.
    Chen S; Sanjana NE; Zheng K; Shalem O; Lee K; Shi X; Scott DA; Song J; Pan JQ; Weissleder R; Lee H; Zhang F; Sharp PA
    Cell; 2015 Mar; 160(6):1246-60. PubMed ID: 25748654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-throughput functional genomics using CRISPR-Cas9.
    Shalem O; Sanjana NE; Zhang F
    Nat Rev Genet; 2015 May; 16(5):299-311. PubMed ID: 25854182
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers.
    Hilton IB; D'Ippolito AM; Vockley CM; Thakore PI; Crawford GE; Reddy TE; Gersbach CA
    Nat Biotechnol; 2015 May; 33(5):510-7. PubMed ID: 25849900
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo genome editing using Staphylococcus aureus Cas9.
    Ran FA; Cong L; Yan WX; Scott DA; Gootenberg JS; Kriz AJ; Zetsche B; Shalem O; Wu X; Makarova KS; Koonin EV; Sharp PA; Zhang F
    Nature; 2015 Apr; 520(7546):186-91. PubMed ID: 25830891
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening.
    Joung J; Konermann S; Gootenberg JS; Abudayyeh OO; Platt RJ; Brigham MD; Sanjana NE; Zhang F
    Nat Protoc; 2017 Apr; 12(4):828-863. PubMed ID: 28333914
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Genome-wide CRISPR Screen in Primary Immune Cells to Dissect Regulatory Networks.
    Parnas O; Jovanovic M; Eisenhaure TM; Herbst RH; Dixit A; Ye CJ; Przybylski D; Platt RJ; Tirosh I; Sanjana NE; Shalem O; Satija R; Raychowdhury R; Mertins P; Carr SA; Zhang F; Hacohen N; Regev A
    Cell; 2015 Jul; 162(3):675-86. PubMed ID: 26189680
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genomics: CRISPR engineering turns on genes.
    Cho SW; Chang HY
    Nature; 2015 Jan; 517(7536):560-2. PubMed ID: 25631441
    [No Abstract]   [Full Text] [Related]  

  • 16. CRISPR gain-of-function screens.
    Rusk N
    Nat Methods; 2015 Feb; 12(2):102-3. PubMed ID: 25798470
    [No Abstract]   [Full Text] [Related]  

  • 17. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system.
    Zetsche B; Gootenberg JS; Abudayyeh OO; Slaymaker IM; Makarova KS; Essletzbichler P; Volz SE; Joung J; van der Oost J; Regev A; Koonin EV; Zhang F
    Cell; 2015 Oct; 163(3):759-71. PubMed ID: 26422227
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A split-Cas9 architecture for inducible genome editing and transcription modulation.
    Zetsche B; Volz SE; Zhang F
    Nat Biotechnol; 2015 Feb; 33(2):139-42. PubMed ID: 25643054
    [No Abstract]   [Full Text] [Related]  

  • 19. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9.
    Doench JG; Fusi N; Sullender M; Hegde M; Vaimberg EW; Donovan KF; Smith I; Tothova Z; Wilen C; Orchard R; Virgin HW; Listgarten J; Root DE
    Nat Biotechnol; 2016 Feb; 34(2):184-191. PubMed ID: 26780180
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements.
    Thakore PI; D'Ippolito AM; Song L; Safi A; Shivakumar NK; Kabadi AM; Reddy TE; Crawford GE; Gersbach CA
    Nat Methods; 2015 Dec; 12(12):1143-9. PubMed ID: 26501517
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 144.