These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 25494239)
1. Understanding the conformation transition in the activation pathway of β2 adrenergic receptor via a targeted molecular dynamics simulation. Xiao X; Zeng X; Yuan Y; Gao N; Guo Y; Pu X; Li M Phys Chem Chem Phys; 2015 Jan; 17(4):2512-22. PubMed ID: 25494239 [TBL] [Abstract][Full Text] [Related]
2. Understanding the effects on constitutive activation and drug binding of a D130N mutation in the β2 adrenergic receptor via molecular dynamics simulation. Zhu Y; Yuan Y; Xiao X; Zhang L; Guo Y; Pu X J Mol Model; 2014 Nov; 20(11):2491. PubMed ID: 25342155 [TBL] [Abstract][Full Text] [Related]
3. Agonist-induced conformational changes in bovine rhodopsin: insight into activation of G-protein-coupled receptors. Bhattacharya S; Hall SE; Vaidehi N J Mol Biol; 2008 Oct; 382(2):539-55. PubMed ID: 18638482 [TBL] [Abstract][Full Text] [Related]
4. Exploring the mechanism of F282L mutation-caused constitutive activity of GPCR by a computational study. Gao N; Liang T; Yuan Y; Xiao X; Zhao Y; Guo Y; Li M; Pu X Phys Chem Chem Phys; 2016 Oct; 18(42):29412-29422. PubMed ID: 27735961 [TBL] [Abstract][Full Text] [Related]
5. Studies on the interactions between β2 adrenergic receptor and Gs protein by molecular dynamics simulations. Feng Z; Hou T; Li Y J Chem Inf Model; 2012 Apr; 52(4):1005-14. PubMed ID: 22404225 [TBL] [Abstract][Full Text] [Related]
6. Ligand induced change of β2 adrenergic receptor from active to inactive conformation and its implication for the closed/open state of the water channel: insight from molecular dynamics simulation, free energy calculation and Markov state model analysis. Bai Q; Pérez-Sánchez H; Zhang Y; Shao Y; Shi D; Liu H; Yao X Phys Chem Chem Phys; 2014 Aug; 16(30):15874-85. PubMed ID: 24962153 [TBL] [Abstract][Full Text] [Related]
7. Modeling GPCR active state conformations: the β(2)-adrenergic receptor. Simpson LM; Wall ID; Blaney FE; Reynolds CA Proteins; 2011 May; 79(5):1441-57. PubMed ID: 21337626 [TBL] [Abstract][Full Text] [Related]
8. Simulations of biased agonists in the β(2) adrenergic receptor with accelerated molecular dynamics. Tikhonova IG; Selvam B; Ivetac A; Wereszczynski J; McCammon JA Biochemistry; 2013 Aug; 52(33):5593-603. PubMed ID: 23879802 [TBL] [Abstract][Full Text] [Related]
9. Insights into the role of Asp79(2.50) in β2 adrenergic receptor activation from molecular dynamics simulations. Ranganathan A; Dror RO; Carlsson J Biochemistry; 2014 Nov; 53(46):7283-96. PubMed ID: 25347607 [TBL] [Abstract][Full Text] [Related]
10. Molecular dynamics simulations of the effect of the G-protein and diffusible ligands on the β2-adrenergic receptor. Goetz A; Lanig H; Gmeiner P; Clark T J Mol Biol; 2011 Dec; 414(4):611-23. PubMed ID: 22037586 [TBL] [Abstract][Full Text] [Related]
11. Allosteric Effect of Nanobody Binding on Ligand-Specific Active States of the β2 Adrenergic Receptor. Chen Y; Fleetwood O; Pérez-Conesa S; Delemotte L J Chem Inf Model; 2021 Dec; 61(12):6024-6037. PubMed ID: 34780174 [TBL] [Abstract][Full Text] [Related]
12. Quantifying conformational changes in GPCRs: glimpse of a common functional mechanism. Dalton JA; Lans I; Giraldo J BMC Bioinformatics; 2015 Apr; 16(1):124. PubMed ID: 25902715 [TBL] [Abstract][Full Text] [Related]
13. Mapping the functional binding sites of cholesterol in β2-adrenergic receptor by long-time molecular dynamics simulations. Cang X; Du Y; Mao Y; Wang Y; Yang H; Jiang H J Phys Chem B; 2013 Jan; 117(4):1085-94. PubMed ID: 23298417 [TBL] [Abstract][Full Text] [Related]
14. Investigation of allosteric coupling in human β2-adrenergic receptor in the presence of intracellular loop 3. Ozgur C; Doruker P; Akten ED BMC Struct Biol; 2016 Jul; 16(1):9. PubMed ID: 27368374 [TBL] [Abstract][Full Text] [Related]
15. Molecular insights into the dynamics of pharmacogenetically important N-terminal variants of the human β2-adrenergic receptor. Shahane G; Parsania C; Sengupta D; Joshi M PLoS Comput Biol; 2014 Dec; 10(12):e1004006. PubMed ID: 25501358 [TBL] [Abstract][Full Text] [Related]
16. Structural insights and functional implications of inter-individual variability in β2-adrenergic receptor. Tandale A; Joshi M; Sengupta D Sci Rep; 2016 Apr; 6():24379. PubMed ID: 27075228 [TBL] [Abstract][Full Text] [Related]
17. Transmembrane helix 6 observed at the interface of β2AR homodimers in blind docking studies. Koroglu A; Akten ED J Biomol Struct Dyn; 2015; 33(7):1503-15. PubMed ID: 25262920 [TBL] [Abstract][Full Text] [Related]
18. Ligand-stabilized conformational states of human beta(2) adrenergic receptor: insight into G-protein-coupled receptor activation. Bhattacharya S; Hall SE; Li H; Vaidehi N Biophys J; 2008 Mar; 94(6):2027-42. PubMed ID: 18065472 [TBL] [Abstract][Full Text] [Related]
19. Molecular dynamics of a biophysical model for beta2-adrenergic and G protein-coupled receptor activation. Rubenstein LA; Zauhar RJ; Lanzara RG J Mol Graph Model; 2006 Dec; 25(4):396-409. PubMed ID: 16574446 [TBL] [Abstract][Full Text] [Related]
20. Mutation of a highly conserved aspartic acid in the beta2 adrenergic receptor: constitutive activation, structural instability, and conformational rearrangement of transmembrane segment 6. Rasmussen SG; Jensen AD; Liapakis G; Ghanouni P; Javitch JA; Gether U Mol Pharmacol; 1999 Jul; 56(1):175-84. PubMed ID: 10385699 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]