These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 25494676)
1. Channel partition into nanoscale polyhedral cages of a triple-self-interpenetrated metal-organic framework with high CO2 uptake. Chen SQ; Zhai QG; Li SN; Jiang YC; Hu MC Inorg Chem; 2015 Jan; 54(1):10-2. PubMed ID: 25494676 [TBL] [Abstract][Full Text] [Related]
2. Porous Metal-Organic Polyhedral Framework containing Cuboctahedron Cages as SBUs with High Affinity for H Maity K; Karan CK; Biradha K Chemistry; 2018 Aug; 24(43):10988-10993. PubMed ID: 29888814 [TBL] [Abstract][Full Text] [Related]
3. Control of interpenetration and gas-sorption properties of metal-organic frameworks by a simple change in ligand design. Prasad TK; Suh MP Chemistry; 2012 Jul; 18(28):8673-80. PubMed ID: 22678955 [TBL] [Abstract][Full Text] [Related]
4. Construction of Interpenetrated Ruthenium Metal-Organic Frameworks as Stable Photocatalysts for CO2 Reduction. Zhang S; Li L; Zhao S; Sun Z; Luo J Inorg Chem; 2015 Sep; 54(17):8375-9. PubMed ID: 26347291 [TBL] [Abstract][Full Text] [Related]
5. Tuning the topology and functionality of metal-organic frameworks by ligand design. Zhao D; Timmons DJ; Yuan D; Zhou HC Acc Chem Res; 2011 Feb; 44(2):123-33. PubMed ID: 21126015 [TBL] [Abstract][Full Text] [Related]
6. Rational Design and Synthesis of a Highly Porous Copper-Based Interpenetrated Metal-Organic Framework for High CO Bose P; Bai L; Ganguly R; Zou R; Zhao Y Chempluschem; 2015 Aug; 80(8):1259-1266. PubMed ID: 31973289 [TBL] [Abstract][Full Text] [Related]
7. Environmentally Friendly, Co-catalyst-Free Chemical Fixation of CO Ugale B; Kumar S; Dhilip Kumar TJ; Nagaraja CM Inorg Chem; 2019 Mar; 58(6):3925-3936. PubMed ID: 30807120 [TBL] [Abstract][Full Text] [Related]
8. Highly porous ionic rht metal-organic framework for H2 and CO2 storage and separation: a molecular simulation study. Babarao R; Eddaoudi M; Jiang JW Langmuir; 2010 Jul; 26(13):11196-203. PubMed ID: 20504014 [TBL] [Abstract][Full Text] [Related]
9. Expanded organic building units for the construction of highly porous metal-organic frameworks. Kong GQ; Han ZD; He Y; Ou S; Zhou W; Yildirim T; Krishna R; Zou C; Chen B; Wu CD Chemistry; 2013 Oct; 19(44):14886-94. PubMed ID: 24115143 [TBL] [Abstract][Full Text] [Related]
10. Isoreticular chiral metal-organic frameworks for asymmetric alkene epoxidation: tuning catalytic activity by controlling framework catenation and varying open channel sizes. Song F; Wang C; Falkowski JM; Ma L; Lin W J Am Chem Soc; 2010 Nov; 132(43):15390-8. PubMed ID: 20936862 [TBL] [Abstract][Full Text] [Related]
11. A new photoactive Ru(II)tris(2,2'-bipyridine) templated Zn(II) benzene-1,4-dicarboxylate metal organic framework: structure and photophysical properties. Whittington CL; Wojtas L; Gao WY; Ma S; Larsen RW Dalton Trans; 2015 Mar; 44(12):5331-7. PubMed ID: 25687116 [TBL] [Abstract][Full Text] [Related]
12. Interpenetration as a mechanism for negative thermal expansion in the metal-organic framework Cu3(btb)2 (MOF-14). Wu Y; Peterson VK; Luks E; Darwish TA; Kepert CJ Angew Chem Int Ed Engl; 2014 May; 53(20):5175-8. PubMed ID: 24692065 [TBL] [Abstract][Full Text] [Related]
13. The first tritopic bridging ligand 1,3,5-tris(4-carboxyphenyl)-benzene (H3BTB) functionalized porous polyoxometalate-based metal-organic framework (POMOF): from design, synthesis to electrocatalytic properties. Dong BX; Chen L; Zhang SY; Ge J; Song L; Tian H; Teng YL; Liu WL Dalton Trans; 2015 Jan; 44(3):1435-40. PubMed ID: 25428699 [TBL] [Abstract][Full Text] [Related]
14. Frontispiece: Rational Design and Synthesis of a Highly Porous Copper-Based Interpenetrated Metal-Organic Framework for High CO Bose P; Bai L; Ganguly R; Zou R; Zhao Y Chempluschem; 2015 Aug; 80(8):. PubMed ID: 31973306 [TBL] [Abstract][Full Text] [Related]
15. Isolation of a structural intermediate during switching of degree of interpenetration in a metal-organic framework. Aggarwal H; Das RK; Bhatt PM; Barbour LJ Chem Sci; 2015 Aug; 6(8):4986-4992. PubMed ID: 30155004 [TBL] [Abstract][Full Text] [Related]
16. Molecular screening of metal-organic frameworks for CO2 storage. Babarao R; Jiang J Langmuir; 2008 Jun; 24(12):6270-8. PubMed ID: 18484751 [TBL] [Abstract][Full Text] [Related]
17. Formation of a metal-organic framework with high surface area and gas uptake by breaking edges off truncated cuboctahedral cages. Yun R; Lu Z; Pan Y; You X; Bai J Angew Chem Int Ed Engl; 2013 Oct; 52(43):11282-5. PubMed ID: 24027078 [TBL] [Abstract][Full Text] [Related]
18. Construction of a polyhedral metal-organic framework via a flexible octacarboxylate ligand for gas adsorption and separation. Lin ZJ; Huang YB; Liu TF; Li XY; Cao R Inorg Chem; 2013 Mar; 52(6):3127-32. PubMed ID: 23469758 [TBL] [Abstract][Full Text] [Related]
19. Porous zirconium metal-organic framework constructed from 2D → 3D interpenetration based on a 3,6-connected kgd net. Wang R; Wang Z; Xu Y; Dai F; Zhang L; Sun D Inorg Chem; 2014 Jul; 53(14):7086-8. PubMed ID: 25000271 [TBL] [Abstract][Full Text] [Related]
20. Pore space partition and charge separation in cage-within-cage indium-organic frameworks with high CO2 uptake. Zheng ST; Bu JT; Li Y; Wu T; Zuo F; Feng P; Bu X J Am Chem Soc; 2010 Dec; 132(48):17062-4. PubMed ID: 21080641 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]