These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 25494683)

  • 1. Room temperature observation of quantum confinement in single InAs nanowires.
    Halpern E; Henning A; Shtrikman H; Rurali R; Cartoixà X; Rosenwaks Y
    Nano Lett; 2015 Jan; 15(1):481-5. PubMed ID: 25494683
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mapping the Coulomb Environment in Interference-Quenched Ballistic Nanowires.
    Gutstein D; Lynall D; Nair SV; Savelyev I; Blumin M; Ercolani D; Ruda HE
    Nano Lett; 2018 Jan; 18(1):124-129. PubMed ID: 29216432
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Telecom-band lasing in single InP/InAs heterostructure nanowires at room temperature.
    Zhang G; Takiguchi M; Tateno K; Tawara T; Notomi M; Gotoh H
    Sci Adv; 2019 Feb; 5(2):eaat8896. PubMed ID: 30801006
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electronic structures of [1 1 1]-oriented free-standing InAs and InP nanowires.
    Liao G; Luo N; Chen KQ; Xu HQ
    J Phys Condens Matter; 2016 Apr; 28(13):135303. PubMed ID: 26951953
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crossover from Coulomb blockade to ballistic transport in InAs nanowire devices.
    Wang LB; Pan D; Huang GY; Zhao J; Kang N; Xu HQ
    Nanotechnology; 2019 Mar; 30(12):124001. PubMed ID: 30566928
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum-confinement effects in InAs-InP core-shell nanowires.
    Zanolli Z; Pistol ME; Fröberg LE; Samuelson L
    J Phys Condens Matter; 2007 Jul; 19(29):295219. PubMed ID: 21483071
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Semimetal Nanowire Rectifier: Balancing Quantum Confinement and Surface Electronegativity.
    Sanchez-Soares A; Greer JC
    Nano Lett; 2016 Dec; 16(12):7639-7644. PubMed ID: 27960465
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carrier transport in high mobility InAs nanowire junctionless transistors.
    Konar A; Mathew J; Nayak K; Bajaj M; Pandey RK; Dhara S; Murali KV; Deshmukh MM
    Nano Lett; 2015 Mar; 15(3):1684-90. PubMed ID: 25658044
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of Ambipolar GaSb/InAs Core-Shell Nanowires by Thermovoltage Measurements.
    Gluschke JG; Leijnse M; Ganjipour B; Dick KA; Linke H; Thelander C
    ACS Nano; 2015 Jul; 9(7):7033-40. PubMed ID: 26090774
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum-confined nanowires as vehicles for enhanced electrical transport.
    Mohammad SN
    Nanotechnology; 2012 Jul; 23(28):285707. PubMed ID: 22728637
    [TBL] [Abstract][Full Text] [Related]  

  • 11. One-dimensional quantum confinement effect modulated thermoelectric properties in InAs nanowires.
    Tian Y; Sakr MR; Kinder JM; Liang D; Macdonald MJ; Qiu RL; Gao HJ; Gao XP
    Nano Lett; 2012 Dec; 12(12):6492-7. PubMed ID: 23167670
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum Transport and Sub-Band Structure of Modulation-Doped GaAs/AlAs Core-Superlattice Nanowires.
    Irber DM; Seidl J; Carrad DJ; Becker J; Jeon N; Loitsch B; Winnerl J; Matich S; Döblinger M; Tang Y; Morkötter S; Abstreiter G; Finley JJ; Grayson M; Lauhon LJ; Koblmüller G
    Nano Lett; 2017 Aug; 17(8):4886-4893. PubMed ID: 28732167
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Current and potential characterization on InAs nanowires by contact-mode atomic force microscopy and Kelvin probe force microscopy.
    On S; Takeuchi M; Takahashi T
    Ultramicroscopy; 2002 May; 91(1-4):127-32. PubMed ID: 12211460
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ten-Fold Enhancement of InAs Nanowire Photoluminescence Emission with an InP Passivation Layer.
    Jurczak P; Zhang Y; Wu J; Sanchez AM; Aagesen M; Liu H
    Nano Lett; 2017 Jun; 17(6):3629-3633. PubMed ID: 28535064
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence of space charge regions within semiconductor nanowires from Kelvin probe force microscopy.
    Narváez AC; Chiaramonte T; Vicaro KO; Clerici JH; Cotta MA
    Nanotechnology; 2009 Nov; 20(46):465705. PubMed ID: 19843990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct heteroepitaxy of vertical InAs nanowires on Si substrates for broad band photovoltaics and photodetection.
    Wei W; Bao XY; Soci C; Ding Y; Wang ZL; Wang D
    Nano Lett; 2009 Aug; 9(8):2926-34. PubMed ID: 19624100
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical emission of InAs nanowires.
    Möller M; de Lima MM; Cantarero A; Chiaramonte T; Cotta MA; Iikawa F
    Nanotechnology; 2012 Sep; 23(37):375704. PubMed ID: 22922756
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anomalous Angle-Dependent Magnetotransport Properties of Single InAs Nanowires.
    Uredat P; Kodaira R; Horiguchi R; Hara S; Beyer A; Volz K; Klar PJ; Elm MT
    Nano Lett; 2020 Jan; 20(1):618-624. PubMed ID: 31829616
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scanned probe imaging of quantum dots inside InAs nanowires.
    Bleszynski AC; Zwanenburg FA; Westervelt RM; Roest AL; Bakkers EP; Kouwenhoven LP
    Nano Lett; 2007 Sep; 7(9):2559-62. PubMed ID: 17691848
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multimode Fabry-Perot conductance oscillations in suspended stacking-faults-free InAs nanowires.
    Kretinin AV; Popovitz-Biro R; Mahalu D; Shtrikman H
    Nano Lett; 2010 Sep; 10(9):3439-45. PubMed ID: 20695446
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.