These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 25494774)

  • 21. Computation of methodology-independent single-ion solvation properties from molecular simulations. III. Correction terms for the solvation free energies, enthalpies, entropies, heat capacities, volumes, compressibilities, and expansivities of solvated ions.
    Reif MM; Hünenberger PH
    J Chem Phys; 2011 Apr; 134(14):144103. PubMed ID: 21495738
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The influence of salt on the structure and energetics of supercoiled DNA.
    Schlick T; Li B; Olson WK
    Biophys J; 1994 Dec; 67(6):2146-66. PubMed ID: 7696459
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Coordination state probabilities and the solvation free energy of Zn2+ in aqueous methanol solutions.
    Tam HH; Asthagiri D; Paulaitis ME
    J Chem Phys; 2012 Oct; 137(16):164504. PubMed ID: 23126727
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Net charge changes in the calculation of relative ligand-binding free energies via classical atomistic molecular dynamics simulation.
    Reif MM; Oostenbrink C
    J Comput Chem; 2014 Jan; 35(3):227-43. PubMed ID: 24249099
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A self-consistent phase-field approach to implicit solvation of charged molecules with Poisson-Boltzmann electrostatics.
    Sun H; Wen J; Zhao Y; Li B; McCammon JA
    J Chem Phys; 2015 Dec; 143(24):243110. PubMed ID: 26723595
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparison of end-point continuum-solvation methods for the calculation of protein-ligand binding free energies.
    Genheden S; Ryde U
    Proteins; 2012 May; 80(5):1326-42. PubMed ID: 22274991
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Beyond the continuum: how molecular solvent structure affects electrostatics and hydrodynamics at solid-electrolyte interfaces.
    Bonthuis DJ; Netz RR
    J Phys Chem B; 2013 Oct; 117(39):11397-413. PubMed ID: 24063251
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular dynamics simulations of peptides and proteins with a continuum electrostatic model based on screened Coulomb potentials.
    Hassan SA; Mehler EL; Zhang D; Weinstein H
    Proteins; 2003 Apr; 51(1):109-25. PubMed ID: 12596268
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electrostatic attraction between DNA and a cationic surfactant aggregate. The screening effect of salt.
    Leal C; Moniri E; Pegado L; Wennerström H
    J Phys Chem B; 2007 May; 111(21):5999-6005. PubMed ID: 17488108
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecular hydrophobic attraction and ion-specific effects studied by molecular dynamics.
    Horinek D; Serr A; Bonthuis DJ; Boström M; Kunz W; Netz RR
    Langmuir; 2008 Feb; 24(4):1271-83. PubMed ID: 18220430
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interfacial water and ion distribution determine ζ potential and binding affinity of nanoparticles to biomolecules.
    Liang D; Dahal U; Zhang YK; Lochbaum C; Ray D; Hamers RJ; Pedersen JA; Cui Q
    Nanoscale; 2020 Sep; 12(35):18106-18123. PubMed ID: 32852025
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Computer simulations with explicit solvent: recent progress in the thermodynamic decomposition of free energies and in modeling electrostatic effects.
    Levy RM; Gallicchio E
    Annu Rev Phys Chem; 1998; 49():531-67. PubMed ID: 9933909
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Properties of alkali-halide salt solutions about polarizable nanoparticle solutes for different ion models.
    Wynveen A; Bresme F
    J Chem Phys; 2010 Oct; 133(14):144706. PubMed ID: 20950029
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of imidazolium-based ionic liquids on the stability and dynamics of gramicidin A and lipid bilayers at different salt concentrations.
    Lee H; Kim SM; Jeon TJ
    J Mol Graph Model; 2015 Sep; 61():53-60. PubMed ID: 26188795
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Computation of methodology-independent ionic solvation free energies from molecular simulations. II. The hydration free energy of the sodium cation.
    Kastenholz MA; Hünenberger PH
    J Chem Phys; 2006 Jun; 124(22):224501. PubMed ID: 16784292
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Role of Surface Chemistry in the Orientational Behavior of Water at an Interface.
    Walker-Gibbons R; Kubincová A; Hünenberger PH; Krishnan M
    J Phys Chem B; 2022 Jun; 126(25):4697-4710. PubMed ID: 35726865
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Contributions of higher-order proximal distribution functions to solvent structure around proteins.
    Yousefi R; Lynch GC; Galbraith M; Pettitt BM
    J Chem Phys; 2021 Sep; 155(10):104110. PubMed ID: 34525817
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electrostatic solvation free energy of amino acid side chain analogs: implications for the validity of electrostatic linear response in water.
    Lin B; Pettitt BM
    J Comput Chem; 2011 Apr; 32(5):878-85. PubMed ID: 20941733
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular dynamics studies of ion distributions for DNA duplexes and DNA clusters: salt effects and connection to DNA melting.
    Long H; Kudlay A; Schatz GC
    J Phys Chem B; 2006 Feb; 110(6):2918-26. PubMed ID: 16471902
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Explicit Solvent Hydration Benchmark for Proteins with Application to the PBSA Method.
    Setny P; Dudek A
    J Chem Theory Comput; 2017 Jun; 13(6):2762-2776. PubMed ID: 28498675
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.