These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 25495117)

  • 1. Easy preparation of self-assembled high-density buckypaper with enhanced mechanical properties.
    Oh JY; Yang SJ; Park JY; Kim T; Lee K; Kim YS; Han HN; Park CR
    Nano Lett; 2015 Jan; 15(1):190-7. PubMed ID: 25495117
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Comparative Study between Knocked-Down Aligned Carbon Nanotubes and Buckypaper-Based Strain Sensors.
    Santos A; Amorim L; Nunes JP; Rocha LA; Silva AF; Viana JC
    Materials (Basel); 2019 Jun; 12(12):. PubMed ID: 31234602
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly oriented carbon nanotube papers made of aligned carbon nanotubes.
    Wang D; Song P; Liu C; Wu W; Fan S
    Nanotechnology; 2008 Feb; 19(7):075609. PubMed ID: 21817646
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation and Properties of Highly Electroconductive and Heat-Resistant CMC/Buckypaper/Epoxy Nanocomposites.
    Zheng T; Wang G; Xu N; Lu C; Qiao Y; Zhang D; Wang X
    Nanomaterials (Basel); 2018 Nov; 8(12):. PubMed ID: 30477224
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strong and Conductive Dry Carbon Nanotube Films by Microcombing.
    Zhang L; Wang X; Xu W; Zhang Y; Li Q; Bradford PD; Zhu Y
    Small; 2015 Aug; 11(31):3830-6. PubMed ID: 25941071
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strain and Temperature Sensitivities Along with Mechanical Properties of CNT Buckypaper Sensors.
    Her SC; Hsu WC
    Sensors (Basel); 2020 May; 20(11):. PubMed ID: 32481770
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A New Route to Enhance the Packing Density of Buckypaper for Superior Piezoresistive Sensor Characteristics.
    Danish M; Luo S
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32443850
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbon Nanotube Length Governs the Viscoelasticity and Permeability of Buckypaper.
    Shen Z; Röding M; Kröger M; Li Y
    Polymers (Basel); 2017 Mar; 9(4):. PubMed ID: 30970795
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generic Mechanochemical Grafting Strategy toward Organophilic Carbon Nanotubes.
    Yang Z; Kuang W; Tang Z; Guo B; Zhang L
    ACS Appl Mater Interfaces; 2017 Mar; 9(8):7666-7674. PubMed ID: 28168871
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crucial Role of Oxidation Debris of Carbon Nanotubes in Subsequent End-Use Applications of Carbon Nanotubes.
    Kim YS; Oh JY; Kim JH; Shin MH; Jeong YC; Sung SJ; Park J; Yang SJ; Park CR
    ACS Appl Mater Interfaces; 2017 May; 9(20):17552-17564. PubMed ID: 28460171
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assembly of Highly Aligned Carbon Nanotubes Using an Electro-Fluidic Assembly Process.
    Chai Z; Seo J; Abbasi SA; Busnaina A
    ACS Nano; 2018 Dec; 12(12):12315-12323. PubMed ID: 30511834
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sensing Performance and Mechanical Properties of Buckypaper Impregnated with Epoxy Resin.
    Her SC; Hsu WC
    Nanomaterials (Basel); 2020 Nov; 10(11):. PubMed ID: 33202635
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Directly measuring of thermal pulse transfer in one-dimensional highly aligned carbon nanotubes.
    Zhang G; Liu C; Fan S
    Sci Rep; 2013; 3():2549. PubMed ID: 23989589
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stiff diamond/buckypaper carbon hybrids.
    Holz T; Mata D; Santos NF; Bdikin I; Fernandes AJ; Costa FM
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):22649-54. PubMed ID: 25412196
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In silico assembly and nanomechanical characterization of carbon nanotube buckypaper.
    Cranford SW; Buehler MJ
    Nanotechnology; 2010 Jul; 21(26):265706. PubMed ID: 20534890
    [TBL] [Abstract][Full Text] [Related]  

  • 16. n-Type carbon nanotubes/silver telluride nanohybrid buckypaper with a high-thermoelectric figure of merit.
    Zhao W; Tan HT; Tan LP; Fan S; Hng HH; Boey YC; Beloborodov I; Yan Q
    ACS Appl Mater Interfaces; 2014 Apr; 6(7):4940-6. PubMed ID: 24645973
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Groove-Assisted Global Spontaneous Alignment of Carbon Nanotubes in Vacuum Filtration.
    Komatsu N; Nakamura M; Ghosh S; Kim D; Chen H; Katagiri A; Yomogida Y; Gao W; Yanagi K; Kono J
    Nano Lett; 2020 Apr; 20(4):2332-2338. PubMed ID: 32092275
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monodisperse CNT Microspheres for High Permeability and Efficiency Flow-Through Filtration Applications.
    Copic D; Maggini L; De Volder M
    Adv Mater; 2018 Mar; 30(12):e1706503. PubMed ID: 29424060
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly conductive carbon nanotube buckypapers with improved doping stability via conjugational cross-linking.
    Chen IW; Liang R; Zhao H; Wang B; Zhang C
    Nanotechnology; 2011 Dec; 22(48):485708. PubMed ID: 22072011
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tailored CNTs Buckypaper Membranes for the Removal of Humic Acid and Separation of Oil-in-Water Emulsions.
    Elnabawy E; Elsherbiny IMA; Abdelsamad AMA; Anis B; Hassan A; Ulbricht M; Khalil ASG
    Membranes (Basel); 2020 May; 10(5):. PubMed ID: 32408564
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.