These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 25495117)
21. A wet-filtration-zipping approach for fabricating highly electroconductive and auxetic graphene/carbon nanotube hybrid buckypaper. Patole SP; Arif MF; Susantyoko RA; Almheiri S; Kumar S Sci Rep; 2018 Aug; 8(1):12188. PubMed ID: 30111877 [TBL] [Abstract][Full Text] [Related]
22. Carbon nanotubes buckypapers for potential transdermal drug delivery. Schwengber A; Prado HJ; Zilli DA; Bonelli PR; Cukierman AL Mater Sci Eng C Mater Biol Appl; 2015 Dec; 57():7-13. PubMed ID: 26354234 [TBL] [Abstract][Full Text] [Related]
23. Preparation of airborne Ag/CNT hybrid nanoparticles using an aerosol process and their application to antimicrobial air filtration. Jung JH; Hwang GB; Lee JE; Bae GN Langmuir; 2011 Aug; 27(16):10256-64. PubMed ID: 21751779 [TBL] [Abstract][Full Text] [Related]
24. The precise self-assembly of individual carbon nanotubes using magnetic capturing and fluidic alignment. Shim JS; Yun YH; Rust MJ; Do J; Shanov V; Schulz MJ; Ahn CH Nanotechnology; 2009 Aug; 20(32):325607. PubMed ID: 19620765 [TBL] [Abstract][Full Text] [Related]
25. Modifying the morphology and properties of aligned CNT foams through secondary CNT growth. Faraji S; Stano K; Akyildiz H; Yildiz O; Jur JS; Bradford PD Nanotechnology; 2018 Jul; 29(29):295602. PubMed ID: 29697060 [TBL] [Abstract][Full Text] [Related]
26. Alignment of Carbon Nanotubes in Carbon Nanotube Fibers Through Nanoparticles: A Route for Controlling Mechanical and Electrical Properties. Hossain MM; Islam MA; Shima H; Hasan M; Lee M ACS Appl Mater Interfaces; 2017 Feb; 9(6):5530-5542. PubMed ID: 28106367 [TBL] [Abstract][Full Text] [Related]
27. Self-aligned nanogaps on multilayer electrodes for fluidic and magnetic assembly of carbon nanotubes. Shim JS; Yun YH; Cho W; Shanov V; Schulz MJ; Ahn CH Langmuir; 2010 Jul; 26(14):11642-7. PubMed ID: 20553000 [TBL] [Abstract][Full Text] [Related]
28. Alignment control of carbon nanotube forest from random to nearly perfectly aligned by utilizing the crowding effect. Xu M; Futaba DN; Yumura M; Hata K ACS Nano; 2012 Jul; 6(7):5837-44. PubMed ID: 22703583 [TBL] [Abstract][Full Text] [Related]
29. A single carbon nanotube-entangled high-performance buckypaper with tunable fracture mode. Sang Y; Cui C; Zhao Y; Zhang X; Zhang Z; Wang F; Liu R; Sui C; He X; Wang C Phys Chem Chem Phys; 2024 Jan; 26(5):4135-4143. PubMed ID: 38226650 [TBL] [Abstract][Full Text] [Related]
30. Growth of horizontally aligned dense carbon nanotubes from trench sidewalls. Lu J; Miao J; Xu T; Yan B; Yu T; Shen Z Nanotechnology; 2011 Jul; 22(26):265614. PubMed ID: 21586807 [TBL] [Abstract][Full Text] [Related]
31. Polymer single crystal-decorated superhydrophobic buckypaper with controlled wetting and conductivity. Laird ED; Wang W; Cheng S; Li B; Presser V; Dyatkin B; Gogotsi Y; Li CY ACS Nano; 2012 Feb; 6(2):1204-13. PubMed ID: 22243213 [TBL] [Abstract][Full Text] [Related]
32. Assembly and Alignment of High Packing Density Carbon Nanotube Arrays Using Lithographically Defined Microscopic Water Features. Foradori SM; Prussack B; Berson A; Arnold MS ACS Nano; 2024 Mar; 18(11):8259-8269. PubMed ID: 38437517 [TBL] [Abstract][Full Text] [Related]
33. Flexible high-conductivity carbon-nanotube interconnects made by rolling and printing. Tawfick S; O'Brien K; Hart AJ Small; 2009 Nov; 5(21):2467-73. PubMed ID: 19685444 [TBL] [Abstract][Full Text] [Related]
34. Tuning the Mechanical and Adhesion Properties of Carbon Nanotubes Using Aligned Cellulose Wrap (Cellulose Nanotube): A Molecular Dynamics Study. Shishehbor M; Pouranian MR Nanomaterials (Basel); 2020 Jan; 10(1):. PubMed ID: 31963187 [TBL] [Abstract][Full Text] [Related]
35. Fabrication of High Content Carbon Nanotube-Polyurethane Sheets with Tailorable Properties. Martinez-Rubi Y; Ashrafi B; Jakubinek MB; Zou S; Laqua K; Barnes M; Simard B ACS Appl Mater Interfaces; 2017 Sep; 9(36):30840-30849. PubMed ID: 28829567 [TBL] [Abstract][Full Text] [Related]
36. Chemical and topographical patterns combined with solution shear for selective-area deposition of highly-aligned semiconducting carbon nanotubes. Dwyer JH; Suresh A; Jinkins KR; Zheng X; Arnold MS; Berson A; Gopalan P Nanoscale Adv; 2021 Mar; 3(6):1767-1775. PubMed ID: 36132553 [TBL] [Abstract][Full Text] [Related]
37. Modeling mechanical energy storage in springs based on carbon nanotubes. Hill FA; Havel TF; Livermore C Nanotechnology; 2009 Jun; 20(25):255704. PubMed ID: 19491467 [TBL] [Abstract][Full Text] [Related]
38. Direct growth of horizontally aligned carbon nanotubes between electrodes and its application to field-effect transistors. Hayashi Y; Jang B; Iijima T; Tokunaga T; Hayashi A; Tanemura M; Amaratunga GA J Nanosci Nanotechnol; 2011 Dec; 11(12):11011-4. PubMed ID: 22409045 [TBL] [Abstract][Full Text] [Related]
39. Cl-Assisted Large Scale Synthesis of Cm-Scale Buckypapers of Fe₃C-Filled Carbon Nanotubes with Pseudo-Capacitor Properties: The Key Role of SBA-16 Catalyst Support as Synthesis Promoter. Boi FS; He Y; Wen J; Wang S; Yan K; Zhang J; Medranda D; Borowiec J; Corrias A Materials (Basel); 2017 Oct; 10(10):. PubMed ID: 29065561 [TBL] [Abstract][Full Text] [Related]
40. Macroscopic carbon nanotube assemblies: preparation, properties, and potential applications. Liu L; Ma W; Zhang Z Small; 2011 Jun; 7(11):1504-20. PubMed ID: 21506264 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]