These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
242 related articles for article (PubMed ID: 25495149)
1. What a difference a decade has not made: the murky electronic structure of iron monocyanide (FeCN) and iron monoisocyanide (FeNC). DeYonker NJ J Phys Chem A; 2015 Jan; 119(1):215-23. PubMed ID: 25495149 [TBL] [Abstract][Full Text] [Related]
2. Low-lying electronic states of FeNC and FeCN: a theoretical journey into isomerization and quartet/sextet competition. DeYonker NJ; Yamaguchi Y; Allen WD; Pak C; Schaefer HF; Peterson KA J Chem Phys; 2004 Mar; 120(10):4726-41. PubMed ID: 15267333 [TBL] [Abstract][Full Text] [Related]
3. Taming the low-lying electronic states of FeH. DeYonker NJ; Allen WD J Chem Phys; 2012 Dec; 137(23):234303. PubMed ID: 23267482 [TBL] [Abstract][Full Text] [Related]
4. Correction to "What a Difference a Decade Has Not Made: The Murky Electronic Structure of Iron Monocyanide (FeCN) and Iron Monoisocyanide (FeNC)". DeYonker NJ J Phys Chem A; 2015 Jan; 119(4):815. PubMed ID: 25590222 [No Abstract] [Full Text] [Related]
5. High-level ab initio predictions for the ionization energy, bond dissociation energies, and heats of formation of nickel carbide (NiC) and its cation (NiC+). Lau KC; Chang YC; Shi X; Ng CY J Chem Phys; 2010 Sep; 133(11):114304. PubMed ID: 20866136 [TBL] [Abstract][Full Text] [Related]
6. High-level ab initio predictions for the ionization energy, bond dissociation energies, and heats of formations of iron carbide (FeC) and its cation (FeC+). Lau KC; Chang YC; Lam CS; Ng CY J Phys Chem A; 2009 Dec; 113(52):14321-8. PubMed ID: 19775110 [TBL] [Abstract][Full Text] [Related]
7. BeCH2: the simplest metal carbene. High levels of theory. Qiu Y; Sokolov AY; Yamaguchi Y; Schaefer HF J Phys Chem A; 2013 Sep; 117(38):9266-73. PubMed ID: 23972228 [TBL] [Abstract][Full Text] [Related]
8. Millimeter-wave rotational spectroscopy of FeCN (X 4Δi) and FeNC (X 6Δi): determining the lowest energy isomer. Flory MA; Ziurys LM J Chem Phys; 2011 Nov; 135(18):184303. PubMed ID: 22088061 [TBL] [Abstract][Full Text] [Related]
9. High-level ab initio predictions for the ionization energy, bond dissociation energies, and heats of formation of cobalt carbide (CoC) and its cation (CoC+). Lau KC; Pan Y; Lam CS; Huang H; Chang YC; Luo Z; Shi X; Ng CY J Chem Phys; 2013 Mar; 138(9):094302. PubMed ID: 23485289 [TBL] [Abstract][Full Text] [Related]
10. Accurate theoretical study of PS(q) (q = 0,+1,-1) in the gas phase. Ben Yaghlane S; Francisco JS; Hochlaf M J Chem Phys; 2012 Jun; 136(24):244309. PubMed ID: 22755576 [TBL] [Abstract][Full Text] [Related]
11. Low-lying quartet electronic states of nitrogen dioxide. Bera PP; Yamaguchi Y; Schaefer HF J Chem Phys; 2007 Nov; 127(17):174303. PubMed ID: 17994814 [TBL] [Abstract][Full Text] [Related]
12. Electronic states and potential energy curves of molybdenum carbide and its ions. Denis PA; Balasubramanian K J Chem Phys; 2006 Jul; 125(2):24306. PubMed ID: 16848583 [TBL] [Abstract][Full Text] [Related]
13. MRCI study on electronic spectrum of 13 electronic states of SiP molecule. Shi D; Xing W; Liu H; Sun J; Zhu Z Spectrochim Acta A Mol Biomol Spectrosc; 2012 Nov; 97():536-45. PubMed ID: 22842348 [TBL] [Abstract][Full Text] [Related]
14. The singlet electronic ground state isomers of dialuminum monoxide: AlOAl, AlAlO, and the transition state connecting them. Turney JM; Sari L; Yamaguchi Y; Schaefer HF J Chem Phys; 2005 Mar; 122(9):094304. PubMed ID: 15836125 [TBL] [Abstract][Full Text] [Related]
15. Theoretical prediction of the ionization energies of the C4H7 radicals: 1-methylallyl, 2-methylallyl, cyclopropylmethyl, and cyclobutyl radicals. Lau KC; Zheng W; Wong NB; Li WK J Chem Phys; 2007 Oct; 127(15):154302. PubMed ID: 17949144 [TBL] [Abstract][Full Text] [Related]
16. The electronic structure of vanadium monochloride cation (VCl(+)): tackling the complexities of transition metal species. DeYonker NJ; Halfen DT; Allen WD; Ziurys LM J Chem Phys; 2014 Nov; 141(20):204302. PubMed ID: 25429937 [TBL] [Abstract][Full Text] [Related]
17. High-level ab initio predictions for the ionization energy, electron affinity, and heats of formation of cyclopentadienyl radical, cation, and anion, C5H5/C5H5+/C5H5-. Lo PK; Lau KC J Phys Chem A; 2014 Apr; 118(13):2498-507. PubMed ID: 24621131 [TBL] [Abstract][Full Text] [Related]
18. Application of the CC(P;Q) Hierarchy of Coupled-Cluster Methods to the Beryllium Dimer. Magoulas I; Bauman NP; Shen J; Piecuch P J Phys Chem A; 2018 Feb; 122(5):1350-1368. PubMed ID: 29286672 [TBL] [Abstract][Full Text] [Related]
19. Ab initio calculations of the lowest electronic states in the CuNO system. Krishna BM; Marquardt R J Chem Phys; 2012 Jun; 136(24):244303. PubMed ID: 22755570 [TBL] [Abstract][Full Text] [Related]
20. Global analytical potential energy surface for the electronic ground state of NH3 from high level ab initio calculations. Marquardt R; Sagui K; Zheng J; Thiel W; Luckhaus D; Yurchenko S; Mariotti F; Quack M J Phys Chem A; 2013 Aug; 117(32):7502-22. PubMed ID: 23688044 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]