BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 2549532)

  • 21. Differentiation of reptilian neural crest cells in vitro.
    Hou L; Takeuchi T
    In Vitro Cell Dev Biol; 1992 May; 28A(5):348-54. PubMed ID: 1317837
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The amphibian melanization inhibiting factor (MIF) blocks the alpha-MSH effect on mouse malignant melanocytes.
    López-Contreras AM; Martínez-Liarte JH; Solano F; Samaraweera P; Newton JM; Bagnara JT
    Pigment Cell Res; 1996 Dec; 9(6):311-6. PubMed ID: 9125755
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The response of single melanophores to extracellular and intracellular iontophoretic injection of melanocyte-stimulating hormone.
    Horowitz JM; Mikuckis GM; Longshore MA
    Endocrinology; 1980 Mar; 106(3):770-7. PubMed ID: 6965477
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Melanoblast-tissue interactions and the development of pigment pattern in Xenopus larvae.
    Macmillan GJ
    J Embryol Exp Morphol; 1976 Jun; 35(3):463-84. PubMed ID: 947992
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Protein kinase C activation antagonizes melatonin-induced pigment aggregation in Xenopus laevis melanophores.
    Sugden D; Rowe SJ
    J Cell Biol; 1992 Dec; 119(6):1515-21. PubMed ID: 1334961
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dynamics of background adaptation in Xenopus laevis: role of catecholamines and melanophore-stimulating hormone.
    van Zoest ID; Heijmen PS; Cruijsen PM; Jenks BG
    Gen Comp Endocrinol; 1989 Oct; 76(1):19-28. PubMed ID: 2599346
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The effects of various nutritional supplements on the growth, migration and differentiation of Xenopus laevis neural crest cells in vitro.
    Wilson HC; Milos NC
    In Vitro Cell Dev Biol; 1987 May; 23(5):323-31. PubMed ID: 3583983
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Studies of pigment transfer between Xenopus laevis melanophores and fibroblasts in vitro and in vivo.
    Aspengren S; Hedberg D; Wallin M
    Pigment Cell Res; 2006 Apr; 19(2):136-45. PubMed ID: 16524429
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Calcium sites in MSH stimulation of xenopus melanophores: studies with photoreactive alpha-MSH.
    de Graan PN; Eberle AN; van de Veerdonk FC
    Mol Cell Endocrinol; 1982 May; 26(3):327-9. PubMed ID: 6281100
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization of alpha-MSH-induced changes in the phosphorylation of a 53 kDa protein in Xenopus melanophores.
    de Graan PN; Oestreicher AB; Zwiers H; Gispen WH; van de Veerdonk FC
    Mol Cell Endocrinol; 1985 Sep; 42(2):127-33. PubMed ID: 4065423
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Melanocyte-stimulating hormone affects melanogenic differentiation of quail neural crest cells in vitro.
    Satoh M; Ide H
    Dev Biol; 1987 Feb; 119(2):579-86. PubMed ID: 3026874
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cell surface carbohydrate involvement in controlling the adhesion and morphology of neural crest cells and melanophores of Xenopus laevis.
    Milos NC; Wilson HC
    J Exp Zool; 1986 May; 238(2):211-24. PubMed ID: 3086486
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of colcemid on the centrosome and microtubules in dermal melanophores of Xenopus laevis larvae in vivo.
    Rubin KA; Starodubov SM; Onishchenko GE
    Cell Mol Biol (Noisy-le-grand); 1999 Nov; 45(7):1099-117. PubMed ID: 10644015
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Low temperature stimulates alpha-melanophore-stimulating hormone secretion and inhibits background adaptation in Xenopus laevis.
    Tonosaki Y; Cruijsen PM; Nishiyama K; Yaginuma H; Roubos EW
    J Neuroendocrinol; 2004 Nov; 16(11):894-905. PubMed ID: 15584930
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Panax ginseng induces anterograde transport of pigment organelles in Xenopus melanophores.
    Eriksson TL; Svensson SP; Lundström I; Persson K; Andersson TP; Andersson RG
    J Ethnopharmacol; 2008 Sep; 119(1):17-23. PubMed ID: 18639398
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Melanization stimulating activity in the skin of the gilthead porgy, Sparus auratus.
    Zuasti A; Martínez-Liarte JH; Ferrer C; Cañizares M; Newton J; Bagnara JT
    Pigment Cell Res; 1993 Oct; 6(5):359-64. PubMed ID: 7905626
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Calcium requirement for alpha-MSH action on tail-fin melanophores of xenopus tadpoles.
    de Graan PN; van Dorp CJ; vad de Veerdonk FC
    Mol Cell Endocrinol; 1982 May; 26(3):315-26. PubMed ID: 6281099
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regulation of melanopsins and Per1 by α -MSH and melatonin in photosensitive Xenopus laevis melanophores.
    Moraes MN; dos Santos LR; Mezzalira N; Poletini MO; Castrucci AM
    Biomed Res Int; 2014; 2014():654710. PubMed ID: 24959583
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Studies on cellular adhesion of Xenopus laevis melanophores: modulation of cell-cell and cell-substratum adhesion in vitro by endogenous Xenopus galactoside-binding lectin.
    Milos NC; Wilson HC; Ma YL; Mohanraj TM; Frunchak YN
    Pigment Cell Res; 1987; 1(3):188-96. PubMed ID: 3508276
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Preliminary biological characterization of a melanization stimulating factor (MSF) from the dorsal skin of the channel catfish, Ictalurus punctatus.
    Johnson WC; Samaraweera P; Zuasti A; Law JH; Bagnara JT
    Life Sci; 1992; 51(15):1229-36. PubMed ID: 1528091
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.