BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 2549532)

  • 41. Melatonin-induced desensitization in amphibian melanophores.
    Rollag MD; Lynch GR
    J Exp Zool; 1993 Apr; 265(5):488-95. PubMed ID: 8385689
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Further evidence on acetylation-induced inhibition of the pigment-dispersing activity of α-melanocyte-stimulating hormone.
    Kobayashi Y; Mizusawa K; Chiba H; Tagawa M; Takahashi A
    Gen Comp Endocrinol; 2012 Mar; 176(1):9-17. PubMed ID: 22197208
    [TBL] [Abstract][Full Text] [Related]  

  • 43. ACTH1-4 potentiates alpha-MSH-induced melanophore dispersion and excessive grooming.
    De Graan PN; Spruijt BM; Eberle AN; Girard J; Gispen WH
    Peptides; 1986; 7(1):1-4. PubMed ID: 3012487
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Gene structure of the goldfish agouti-signaling protein: a putative role in the dorsal-ventral pigment pattern of fish.
    Cerdá-Reverter JM; Haitina T; Schiöth HB; Peter RE
    Endocrinology; 2005 Mar; 146(3):1597-610. PubMed ID: 15591139
    [TBL] [Abstract][Full Text] [Related]  

  • 45. alpha-MSH (melanocyte stimulating hormone) and MCH (melanin concentrating hormone) actions in Bufo ictericus ictericus melanophores.
    Ferroni EN; Castrucci AM
    Comp Biochem Physiol A Comp Physiol; 1987; 88(1):15-20. PubMed ID: 2889567
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Studies on cellular adhesion of Xenopus laevis melanophores: pigment pattern formation and alteration in vivo by endogenous galactoside-binding lectin or its sugar hapten inhibitor.
    Frunchak YN; Milos NC
    Pigment Cell Res; 1990; 3(2):101-14. PubMed ID: 2385564
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Morphology of the pars intermedia and the melanophore-stimulating cells in Xenopus laevis in relation to background adaptation.
    de Rijk EP; Jenks BG; Wendelaar Bonga SE
    Gen Comp Endocrinol; 1990 Jul; 79(1):74-82. PubMed ID: 2162308
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effects of acrylamide, latrunculin, and nocodazole on intracellular transport and cytoskeletal organization in melanophores.
    Aspengren S; Wielbass L; Wallin M
    Cell Motil Cytoskeleton; 2006 Jul; 63(7):423-36. PubMed ID: 16671098
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Comparison of structural requirements of alpha-MSH and ACTH for inducing excessive grooming and pigment dispersion.
    Spruijt BM; De Graan PN; Eberle AN; Gispen WH
    Peptides; 1985; 6(6):1185-9. PubMed ID: 3010259
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The site and time of expression of MIF in frog development.
    Fukuzawa T; Okumoto H; Nishioka M
    Pigment Cell Res; 1997 Dec; 10(6):401-9. PubMed ID: 9428008
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The protein-phosphatase inhibitor okadaic acid mimics MSH-induced and melatonin-reversible melanosome dispersion in Xenopus laevis melanophores.
    Cozzi B; Rollag MD
    Pigment Cell Res; 1992 Sep; 5(3):148-54. PubMed ID: 1329076
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Melanophore lineage and clonal organization of the epidermis in Xenopus embryos as revealed by expression of a biogenic marker, GFP.
    Fukuzawa T
    Pigment Cell Res; 2000 Jun; 13(3):151-7. PubMed ID: 10885673
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Zebrafish Bioassay for Screening Therapeutic Candidates Based on Melanotrophic Activity.
    Hong TI; Hwang KS; Choi TI; Kleinau G; Scheerer P; Bang JK; Jung SH; Kim CH
    Int J Mol Sci; 2021 Aug; 22(17):. PubMed ID: 34502223
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Fish melanin-concentrating hormone disperses melanin in amphibian melanophores.
    Ide H; Kawazoe I; Kawauchi H
    Gen Comp Endocrinol; 1985 Jun; 58(3):486-90. PubMed ID: 3874116
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Melatonin desensitizing effects on the in vitro responses to MCH, alpha-MSH, isoproterenol and melatonin in pigment cells of a fish (S. marmoratus), a toad (B. ictericus), a frog (R. pipiens), and a lizard (A. carolinensis), exposed to varying photoperiodic regimens.
    Filadelfi AM; Castrucci AM
    Comp Biochem Physiol A Physiol; 1994 Dec; 109(4):1027-37. PubMed ID: 7828022
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The development of the pars intermedia and its role in the regulation of dermal melanophores in the larvae of the amphibian Xenopus laevis.
    Verburg-van Kemenade BM; Willems PH; Jenks BG; van Overbeeke AP
    Gen Comp Endocrinol; 1984 Jul; 55(1):54-65. PubMed ID: 6086446
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A sensitive bioassay for melanotropic hormones using isolated medaka melanophores.
    Negishi S; Kawazoe I; Kawauchi H
    Gen Comp Endocrinol; 1988 Apr; 70(1):127-32. PubMed ID: 2836261
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Regulation of melanoblast and retinal pigment epithelium development by Xenopus laevis Mitf.
    Kumasaka M; Sato S; Yajima I; Goding CR; Yamamoto H
    Dev Dyn; 2005 Nov; 234(3):523-34. PubMed ID: 16028277
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Proliferation in vitro of melanophores from Xenopus laevis.
    Fukuzawa T; Ide H
    J Exp Zool; 1983 May; 226(2):239-44. PubMed ID: 6306135
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Differentiation of neural crest cells of Xenopus laevis in clonal culture.
    Akira E; Ide H
    Pigment Cell Res; 1987; 1(1):28-36. PubMed ID: 3507660
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.