BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 2549532)

  • 61. Analysis of autofeedback mechanisms in the secretion of pro-opiomelanocortin-derived peptides by melanotrope cells of Xenopus laevis.
    de Koning HP; Jenks BG; Scheenen WJ; Balm PH; Roubos EW
    Gen Comp Endocrinol; 1992 Sep; 87(3):394-401. PubMed ID: 1330808
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Aggregation of pigment granules in single cultured Xenopus laevis melanophores by melatonin analogues.
    Sugden D
    Br J Pharmacol; 1991 Dec; 104(4):922-7. PubMed ID: 1667293
    [TBL] [Abstract][Full Text] [Related]  

  • 63. The trophic responses of avian sensory ganglia in vitro to N-acetylated and des-acetyl forms of alpha-melanocyte stimulating hormone (alpha-MSH) are qualitatively distinct.
    Haynes LW; Semenenko FM
    Int J Dev Neurosci; 1989; 7(6):623-32. PubMed ID: 2557733
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Pigment cell pattern formation in Taricha torosa: the role of the extracellular matrix in controlling pigment cell migration and differentiation.
    Tucker RP; Erickson CA
    Dev Biol; 1986 Nov; 118(1):268-85. PubMed ID: 3770303
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Effects of fetal bovine serum and serum-free conditions on white and dark axolotl neural crest explants.
    Dean AD; Frost-Mason SK
    In Vitro Cell Dev Biol; 1991 May; 27A(5):402-8. PubMed ID: 2071543
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Melanocyte stimulating hormone induces the differentiation of mouse epidermal melanocytes in serum-free culture.
    Hirobe T
    J Cell Physiol; 1992 Aug; 152(2):337-45. PubMed ID: 1322416
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Effect of putative melatonin receptor antagonists on melatonin-induced pigment aggregation in isolated Xenopus laevis melanophores.
    Sugden D
    Eur J Pharmacol; 1992 Mar; 213(3):405-8. PubMed ID: 1319920
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Alpha-melanocyte-stimulating hormone and endothelin-1 have opposing effects on melanocyte adhesion, migration, and pp125FAK phosphorylation.
    Scott G; Cassidy L; Abdel-Malek Z
    Exp Cell Res; 1997 Nov; 237(1):19-28. PubMed ID: 9417862
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Observations on the development of unusual melanization of leopard frog ventral skin.
    Fernandez PJ; Bagnara JT
    J Morphol; 1993 Apr; 216(1):9-15. PubMed ID: 8496971
    [TBL] [Abstract][Full Text] [Related]  

  • 70. N-terminal acetylation of melanophore-stimulating hormone in the pars intermedia of Xenopus laevis is a physiologically regulated process.
    Verburg-van Kemenade BM; Jenks BG; Smits RJ
    Neuroendocrinology; 1987 Oct; 46(4):289-96. PubMed ID: 2823159
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Induction of melanization within hair bulb melanocytes in chinchilla mutant by melanogenic stimulants.
    Imokawa G; Yada Y; Hori Y
    J Invest Dermatol; 1988 Aug; 91(2):106-13. PubMed ID: 2840469
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Combinatorial diffusion assay used to identify topically active melanocyte-stimulating hormone receptor antagonists.
    Quillan JM; Jayawickreme CK; Lerner MR
    Proc Natl Acad Sci U S A; 1995 Mar; 92(7):2894-8. PubMed ID: 7708744
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Effects of local tissue environment on the differentiation of neural crest cells in turtle, with special reference to understanding the spatial distribution of pigment cells.
    Hou L
    Pigment Cell Res; 1999 Apr; 12(2):81-8. PubMed ID: 10231195
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Differential expressions of melanocortin receptor subtypes in melanophores and xanthophores of barfin flounder.
    Kobayashi Y; Tsuchiya K; Yamanome T; Schiöth HB; Takahashi A
    Gen Comp Endocrinol; 2010 Aug; 168(1):133-42. PubMed ID: 20417636
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Calcium-dependent irreversible effect of ionophore A23187 on melanophores.
    Hadley ME
    Pigment Cell Res; 1987; 1(1):57-61. PubMed ID: 2853342
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Mitogenic and melanogenic stimulation of normal human melanocytes by melanotropic peptides.
    Abdel-Malek Z; Swope VB; Suzuki I; Akcali C; Harriger MD; Boyce ST; Urabe K; Hearing VJ
    Proc Natl Acad Sci U S A; 1995 Feb; 92(5):1789-93. PubMed ID: 7878059
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A developmental analysis of periodic albinism in the amphibian Xenopus laevis.
    Eagleson GW; van der Heijden RA; Roubos EW; Jenks BG
    Gen Comp Endocrinol; 2010 Sep; 168(2):302-6. PubMed ID: 20178802
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Role of the dermal tracts in the pigment pattern of the frog.
    Denèfle JP; Lechaire JP
    Tissue Cell; 1992; 24(4):593-602. PubMed ID: 1440581
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Melanophore differentiation in Xenopus laevis, with special reference to dorsoventral pigment pattern formation.
    Ohsugi K; Ide H
    J Embryol Exp Morphol; 1983 Jun; 75():141-50. PubMed ID: 6411851
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Frog melanophores cultured on fluorescent microbeads: biomimic-based biosensing.
    Andersson TP; Filippini D; Suska A; Johansson TL; Svensson SP; Lundström I
    Biosens Bioelectron; 2005 Jul; 21(1):111-20. PubMed ID: 15967358
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.