These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 2549532)

  • 81. The dynamic properties of intermediate filaments during organelle transport.
    Chang L; Barlan K; Chou YH; Grin B; Lakonishok M; Serpinskaya AS; Shumaker DK; Herrmann H; Gelfand VI; Goldman RD
    J Cell Sci; 2009 Aug; 122(Pt 16):2914-23. PubMed ID: 19638410
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Analysis of gamma-aminobutyric acidB receptor function in the in vitro and in vivo regulation of alpha-melanotropin-stimulating hormone secretion from melanotrope cells of Xenopus laevis.
    De Koning HP; Jenks BG; Roubos EW
    Endocrinology; 1993 Feb; 132(2):674-81. PubMed ID: 8381070
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Possible paracrine function of alpha-melanocyte-stimulating hormone and inhibition of its melanin-dispersing activity by N-terminal acetylation in the skin of the barfin flounder, Verasper moseri.
    Kobayashi Y; Mizusawa K; Yamanome T; Chiba H; Takahashi A
    Gen Comp Endocrinol; 2009 May; 161(3):419-24. PubMed ID: 19245814
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Discovery and structure-activity relationships of novel alpha-melanocyte-stimulating hormone inhibitors.
    Sawyer TK; Staples DJ; Castrucci AM; Hadley ME
    Pept Res; 1989; 2(1):140-6. PubMed ID: 2562482
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Alpha-melanocyte-stimulating hormone structure-activity studies: comparative analysis of melanotropic and CNS bioactivities.
    Sawyer TK; Hadley ME; Hruby VJ; Castrucci AM; Staples DJ; Farah J; O'Donohue TL
    Synapse; 1988; 2(3):289-92. PubMed ID: 2850630
    [TBL] [Abstract][Full Text] [Related]  

  • 86. A comparative ultrastructural and physiological study on melanophores of wild-type and periodic albino mutants of Xenopus laevis.
    Seldenrijk R; Huijsman KG; Heussen AM; van de Veerdonk FC
    Cell Tissue Res; 1982; 222(1):1-9. PubMed ID: 6800656
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Stimulation of cultured iridophores by amphibian ventral conditioned medium.
    Bagnara JT; Fukuzawa T
    Pigment Cell Res; 1990 Nov; 3(5):243-50. PubMed ID: 2095576
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Alpha-melanophore-stimulating hormone in the brain, cranial placode derivatives, and retina of Xenopus laevis during development in relation to background adaptation.
    Kramer BM; Claassen IE; Westphal NJ; Jansen M; Tuinhof R; Jenks BG; Roubos EW
    J Comp Neurol; 2003 Jan; 456(1):73-83. PubMed ID: 12508315
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Pigment pattern evolution by differential deployment of neural crest and post-embryonic melanophore lineages in Danio fishes.
    Quigley IK; Turner JM; Nuckels RJ; Manuel JL; Budi EH; MacDonald EL; Parichy DM
    Development; 2004 Dec; 131(24):6053-69. PubMed ID: 15537688
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Design of potent linear alpha-melanotropin 4-10 analogues modified in positions 5 and 10.
    Al-Obeidi F; Hruby VJ; Castrucci AM; Hadley ME
    J Med Chem; 1989 Jan; 32(1):174-9. PubMed ID: 2535874
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Mitogenic and anti-proliferative signals for neural crest cells and the neurogenic action of TGF-beta1.
    Zhang JM; Hoffmann R; Sieber-Blum M
    Dev Dyn; 1997 Mar; 208(3):375-86. PubMed ID: 9056641
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Melanization, α-melanocyte stimulating hormone and steroid hormones in male western fence lizards from nine populations.
    Seddon RJ; Hews DK
    Gen Comp Endocrinol; 2020 Jan; 285():113287. PubMed ID: 31563645
    [TBL] [Abstract][Full Text] [Related]  

  • 93. The delayed entry of thoracic neural crest cells into the dorsolateral path is a consequence of the late emigration of melanogenic neural crest cells from the neural tube.
    Reedy MV; Faraco CD; Erickson CA
    Dev Biol; 1998 Aug; 200(2):234-46. PubMed ID: 9705230
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Neuronal differentiation of mouse neural crest cells in vitro.
    Ito K; Morita T; Takeuchi T
    Cell Struct Funct; 1988 Jun; 13(3):267-70. PubMed ID: 3416360
    [TBL] [Abstract][Full Text] [Related]  

  • 95. The effect of apomorphine and ergocriptine on the release of MSH by the pars intermedia of Rana pipiens.
    Smith AF
    Neuroendocrinology; 1975; 19(4):363-76. PubMed ID: 1083962
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Pigment cell pattern formation in amphibian embryos: a reexamination of the dopa technique.
    Tucker RP; Erickson CA
    J Exp Zool; 1986 Nov; 240(2):173-82. PubMed ID: 2432154
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Inductive differentiation of two neural lineages reconstituted in a microculture system from Xenopus early gastrula cells.
    Mitani S; Okamoto H
    Development; 1991 May; 112(1):21-31. PubMed ID: 1769329
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Action of melanophore-stimulating hormone on melanophores of the cyprinid fish Zacco temmincki.
    Iga T; Takabatake I
    Comp Biochem Physiol C Comp Pharmacol; 1982; 73(1):51-5. PubMed ID: 6128180
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Cellular plasticity among axolotl neural crest-derived pigment cell lineages.
    Thibaudeau G; Holder S
    Pigment Cell Res; 1998 Feb; 11(1):38-44. PubMed ID: 9523334
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Short-term effects of α-melanocyte-stimulating hormone in three distinct melanin-pigmented cell types of Anura.
    Zieri R; Franco-Belussi L; Oliveira C
    An Acad Bras Cienc; 2023; 95(1):e20211581. PubMed ID: 36946809
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.