BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 25495458)

  • 1. Understanding the thermostability and activity of Bacillus subtilis lipase mutants: insights from molecular dynamics simulations.
    Singh B; Bulusu G; Mitra A
    J Phys Chem B; 2015 Jan; 119(2):392-409. PubMed ID: 25495458
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of point mutations on the thermostability of B. subtilis lipase: investigating nonadditivity.
    Singh B; Bulusu G; Mitra A
    J Comput Aided Mol Des; 2016 Oct; 30(10):899-916. PubMed ID: 27696241
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering lipase A from mesophilic Bacillus subtilis for activity at low temperatures.
    Kumar V; Yedavalli P; Gupta V; Rao NM
    Protein Eng Des Sel; 2014 Mar; 27(3):73-82. PubMed ID: 24402332
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Relation Between Lipase Thermostability and Dynamics of Hydrogen Bond and Hydrogen Bond Network Based on Long Time Molecular Dynamics Simulation.
    Zhang L; Ding Y
    Protein Pept Lett; 2017; 24(7):643-648. PubMed ID: 28464764
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermostable Bacillus subtilis lipases: in vitro evolution and structural insight.
    Ahmad S; Kamal MZ; Sankaranarayanan R; Rao NM
    J Mol Biol; 2008 Aug; 381(2):324-40. PubMed ID: 18599073
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural basis of selection and thermostability of laboratory evolved Bacillus subtilis lipase.
    Acharya P; Rajakumara E; Sankaranarayanan R; Rao NM
    J Mol Biol; 2004 Aug; 341(5):1271-81. PubMed ID: 15321721
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Just an additional hydrogen bond can dramatically reduce the catalytic activity of Bacillus subtilis lipase A I12T mutant: an integration of computational modeling and experimental analysis.
    Ni Z; Jin R; Chen H; Lin X
    Comput Biol Med; 2013 Nov; 43(11):1882-8. PubMed ID: 24209933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermostability of Lipase A and Dynamic Communication Based on Residue Interaction Network.
    Xia Q; Ding Y
    Protein Pept Lett; 2019; 26(9):702-716. PubMed ID: 31215367
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stability curves of laboratory evolved thermostable mutants of a Bacillus subtilis lipase.
    Kamal MZ; Ahmad S; Yedavalli P; Rao NM
    Biochim Biophys Acta; 2010 Sep; 1804(9):1850-6. PubMed ID: 20599630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural basis for the remarkable stability of Bacillus subtilis lipase (Lip A) at low pH.
    Rajakumara E; Acharya P; Ahmad S; Sankaranaryanan R; Rao NM
    Biochim Biophys Acta; 2008 Feb; 1784(2):302-11. PubMed ID: 18053819
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro evolved non-aggregating and thermostable lipase: structural and thermodynamic investigation.
    Kamal MZ; Ahmad S; Molugu TR; Vijayalakshmi A; Deshmukh MV; Sankaranarayanan R; Rao NM
    J Mol Biol; 2011 Oct; 413(3):726-41. PubMed ID: 21925508
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescence spectroscopic analysis of the structure and dynamics of Bacillus subtilis lipase A governing its activity profile under alkaline conditions.
    Kübler D; Ingenbosch KN; Bergmann A; Weidmann M; Hoffmann-Jacobsen K
    Eur Biophys J; 2015 Dec; 44(8):655-65. PubMed ID: 26224303
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of local residue environmental changes in thermostable mutants of the GH11 xylanase from Bacillus subtilis.
    Silva SB; Pinheiro MP; Fuzo CA; Silva SR; Ferreira TL; Lourenzoni MR; Nonato MC; Vieira DS; Ward RJ
    Int J Biol Macromol; 2017 Apr; 97():574-584. PubMed ID: 28109807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and functional insights into thermostable and organic solvent stable variant Pro247-Ser of Bacillus lipase.
    Chopra N; Kumar A; Kaur J
    Int J Biol Macromol; 2018 Mar; 108():845-852. PubMed ID: 29101046
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystallization and preliminary X-ray crystallographic investigations on several thermostable forms of a Bacillus subtilis lipase.
    Rajakumara E; Acharya P; Ahmad S; Shanmugam VM; Rao NM; Sankaranarayanan R
    Acta Crystallogr D Biol Crystallogr; 2004 Jan; 60(Pt 1):160-2. PubMed ID: 14684916
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rational design of a Yarrowia lipolytica derived lipase for improved thermostability.
    Zhang H; Sang J; Zhang Y; Sun T; Liu H; Yue R; Zhang J; Wang H; Dai Y; Lu F; Liu F
    Int J Biol Macromol; 2019 Sep; 137():1190-1198. PubMed ID: 31299254
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of point mutation on enzymatic activity: correlation between protein electronic structure and motion in chorismate mutase reaction.
    Ishida T
    J Am Chem Soc; 2010 May; 132(20):7104-18. PubMed ID: 20426479
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Effects of One Amino Acid Substitutions at the C-Terminal Region of Thermostable L2 Lipase by Computational and Experimental Approach.
    Sani HA; Shariff FM; Rahman RNZRA; Leow TC; Salleh AB
    Mol Biotechnol; 2018 Jan; 60(1):1-11. PubMed ID: 29058211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding thermal and organic solvent stability of thermoalkalophilic lipases: insights from computational predictions and experiments.
    Shehata M; Timucin E; Venturini A; Sezerman OU
    J Mol Model; 2020 May; 26(6):122. PubMed ID: 32383051
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational approach for designing thermostable Candida antarctica lipase B by molecular dynamics simulation.
    Park HJ; Park K; Kim YH; Yoo YJ
    J Biotechnol; 2014 Dec; 192 Pt A():66-70. PubMed ID: 25270022
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.