BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 25495633)

  • 1. Exact reconstruction of gene regulatory networks using compressive sensing.
    Chang YH; Gray JW; Tomlin CJ
    BMC Bioinformatics; 2014 Dec; 15(1):400. PubMed ID: 25495633
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Sparse Reconstruction Approach for Identifying Gene Regulatory Networks Using Steady-State Experiment Data.
    Zhang W; Zhou T
    PLoS One; 2015; 10(7):e0130979. PubMed ID: 26207991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reconstructing gene-regulatory networks from time series, knock-out data, and prior knowledge.
    Geier F; Timmer J; Fleck C
    BMC Syst Biol; 2007 Feb; 1():11. PubMed ID: 17408501
    [TBL] [Abstract][Full Text] [Related]  

  • 4. BGRMI: A method for inferring gene regulatory networks from time-course gene expression data and its application in breast cancer research.
    Iglesias-Martinez LF; Kolch W; Santra T
    Sci Rep; 2016 Nov; 6():37140. PubMed ID: 27876826
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization-based inference for temporally evolving networks with applications in biology.
    Chang YH; Gray J; Tomlin C
    J Comput Biol; 2012 Dec; 19(12):1307-23. PubMed ID: 23210478
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reconstructing directed signed gene regulatory network from microarray data.
    Qiu P; Plevritis SK
    IEEE Trans Biomed Eng; 2011 Dec; 58(12):3518-21. PubMed ID: 21803675
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Learning genetic regulatory network connectivity from time series data.
    Barker NA; Myers CJ; Kuwahara H
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(1):152-65. PubMed ID: 21071804
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiscale binarization of gene expression data for reconstructing Boolean networks.
    Hopfensitz M; Mussel C; Wawra C; Maucher M; Kuhl M; Neumann H; Kestler HA
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(2):487-98. PubMed ID: 21464514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3off2: A network reconstruction algorithm based on 2-point and 3-point information statistics.
    Affeldt S; Verny L; Isambert H
    BMC Bioinformatics; 2016 Jan; 17 Suppl 2(Suppl 2):12. PubMed ID: 26823190
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inference of genetic networks using random forests: Assigning different weights for gene expression data.
    Kimura S; Tokuhisa M; Okada M
    J Bioinform Comput Biol; 2019 Aug; 17(4):1950015. PubMed ID: 31291807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Learning gene regulatory networks from gene expression measurements using non-parametric molecular kinetics.
    Aijö T; Lähdesmäki H
    Bioinformatics; 2009 Nov; 25(22):2937-44. PubMed ID: 19706742
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Computational Approach to Study Gene Expression Networks.
    Rubinstein A; Kassir Y
    Methods Mol Biol; 2017; 1471():325-334. PubMed ID: 28349406
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fitting a geometric graph to a protein-protein interaction network.
    Higham DJ; Rasajski M; Przulj N
    Bioinformatics; 2008 Apr; 24(8):1093-9. PubMed ID: 18344248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconstructing biological networks using conditional correlation analysis.
    Rice JJ; Tu Y; Stolovitzky G
    Bioinformatics; 2005 Mar; 21(6):765-73. PubMed ID: 15486043
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A swarm intelligence framework for reconstructing gene networks: searching for biologically plausible architectures.
    Kentzoglanakis K; Poole M
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(2):358-71. PubMed ID: 21576756
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stability in GRN Inference.
    Jurman G; Filosi M; Visintainer R; Riccadonna S; Furlanello C
    Methods Mol Biol; 2019; 1883():323-346. PubMed ID: 30547407
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Employing decomposable partially observable Markov decision processes to control gene regulatory networks.
    Erdogdu U; Polat F; Alhajj R
    Artif Intell Med; 2017 Nov; 83():14-34. PubMed ID: 28733120
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unraveling gene regulatory networks from time-resolved gene expression data - a measures comparison study.
    Hempel S; Koseska A; Nikoloski Z; Kurths J
    BMC Bioinformatics; 2011 Jul; 12():292. PubMed ID: 21771321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-Objective Optimization Algorithm to Discover Condition-Specific Modules in Multiple Networks.
    Ma X; Sun P; Zhao J
    Molecules; 2017 Dec; 22(12):. PubMed ID: 29240706
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure Optimization for Large Gene Networks Based on Greedy Strategy.
    Gómez-Vela F; Rodriguez-Baena DS; Vázquez-Noguera JL
    Comput Math Methods Med; 2018; 2018():9674108. PubMed ID: 30013615
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.