These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 25495793)

  • 1. Modeling the drug release from hydrogel-based matrices.
    Caccavo D; Cascone S; Lamberti G; Barba AA
    Mol Pharm; 2015 Feb; 12(2):474-83. PubMed ID: 25495793
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlled drug release from hydrogel-based matrices: Experiments and modeling.
    Caccavo D; Cascone S; Lamberti G; Barba AA
    Int J Pharm; 2015; 486(1-2):144-52. PubMed ID: 25827589
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the behavior of HPMC/Theophylline matrices for controlled drug delivery.
    Barba AA; d'Amore M; Cascone S; Chirico S; Lamberti G; Titomanlio G
    J Pharm Sci; 2009 Nov; 98(11):4100-10. PubMed ID: 19226633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlled release from hydrogel-based solid matrices. A model accounting for water up-take, swelling and erosion.
    Lamberti G; Galdi I; Barba AA
    Int J Pharm; 2011 Apr; 407(1-2):78-86. PubMed ID: 21256940
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards elucidation of the drug release mechanism from compressed hydrophilic matrices made of cellulose ethers. II. Evaluation of a possible swelling-controlled drug release mechanism using dimensionless analysis.
    Ferrero C; Massuelle D; Doelker E
    J Control Release; 2010 Jan; 141(2):223-33. PubMed ID: 19766681
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parametric simulation of drug release from hydrogel-based matrices.
    Lamberti G
    J Pharm Pharmacol; 2012 Jan; 64(1):48-51. PubMed ID: 22150671
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous quantification of drug release and erosion from hypromellose hydrophilic matrices.
    Ghori MU; Ginting G; Smith AM; Conway BR
    Int J Pharm; 2014 Apr; 465(1-2):405-12. PubMed ID: 24560637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A general code to predict the drug release kinetics from different shaped matrices.
    Barba AA; d'Amore M; Chirico S; Lamberti G; Titomanlio G
    Eur J Pharm Sci; 2009 Feb; 36(2-3):359-68. PubMed ID: 19022380
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polymer erosion and drug release characterization of hydroxypropyl methylcellulose matrices.
    Reynolds TD; Gehrke SH; Hussain AS; Shenouda LS
    J Pharm Sci; 1998 Sep; 87(9):1115-23. PubMed ID: 9724564
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new model describing the swelling and drug release kinetics from hydroxypropyl methylcellulose tablets.
    Siepmann J; Podual K; Sriwongjanya M; Peppas NA; Bodmeier R
    J Pharm Sci; 1999 Jan; 88(1):65-72. PubMed ID: 9874704
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An integrated system for dissolution studies and magnetic resonance imaging of controlled release, polymer-based dosage forms-a tool for quantitative assessment of hydrogel formation processes.
    Kulinowski P; Dorozyński P; Jachowicz R; Weglarz WP
    J Pharm Biomed Anal; 2008 Nov; 48(3):685-93. PubMed ID: 18715732
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mathematical modeling and finite element simulation of slow release of drugs using hydrogels as carriers with various drug concentration distributions.
    Xu Y; Jia Y; Wang Z; Wang Z
    J Pharm Sci; 2013 May; 102(5):1532-43. PubMed ID: 23526640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Release of theophylline and carbamazepine from matrix tablets--consequences of HPMC chemical heterogeneity.
    Viridén A; Abrahmsén-Alami S; Wittgren B; Larsson A
    Eur J Pharm Biopharm; 2011 Aug; 78(3):470-9. PubMed ID: 21316446
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards elucidation of the drug release mechanism from compressed hydrophilic matrices made of cellulose ethers. III. Critical use of thermodynamic parameters of activation for modeling the water penetration and drug release processes.
    Ferrero C; Massuelle D; Jeannerat D; Doelker E
    J Control Release; 2013 Sep; 170(2):175-82. PubMed ID: 23727289
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of chitosan coating on the swelling and controlled release of a poorly water-soluble drug from an amphiphilic and pH-sensitive hydrogel.
    Colinet I; Dulong V; Mocanu G; Picton L; Le Cerf D
    Int J Biol Macromol; 2010 Aug; 47(2):120-5. PubMed ID: 20471413
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hemicellulose-based pH-sensitive and biodegradable hydrogel for controlled drug delivery.
    Sun XF; Wang HH; Jing ZX; Mohanathas R
    Carbohydr Polym; 2013 Feb; 92(2):1357-66. PubMed ID: 23399165
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrogels in controlled release formulations: network design and mathematical modeling.
    Lin CC; Metters AT
    Adv Drug Deliv Rev; 2006 Nov; 58(12-13):1379-408. PubMed ID: 17081649
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlled drug delivery from swellable hydroxypropylmethylcellulose matrices: model-based analysis of observed radial front movements.
    Kiil S; Dam-Johansen K
    J Control Release; 2003 Jun; 90(1):1-21. PubMed ID: 12767703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The characteristics of spontaneously forming physically cross-linked hydrogels composed of two water-soluble phospholipid polymers for oral drug delivery carrier I: hydrogel dissolution and insulin release under neutral pH condition.
    Nam K; Watanabe J; Ishihara K
    Eur J Pharm Sci; 2004 Nov; 23(3):261-70. PubMed ID: 15489127
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New amphiphilic and pH-sensitive hydrogel for controlled release of a model poorly water-soluble drug.
    Colinet I; Dulong V; Mocanu G; Picton L; Le Cerf D
    Eur J Pharm Biopharm; 2009 Nov; 73(3):345-50. PubMed ID: 19631739
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.