These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 25495932)

  • 1. Effects of Indole-3-Acetic Acid (IAA), a Plant Hormone, on the Ryegrass Yield and the Removal of Fluoranthene from Soil.
    Li W; Xu L; Wu J; Ma L; Liu M; Jiao J; Li H; Hu F
    Int J Phytoremediation; 2015; 17(1-6):422-8. PubMed ID: 25495932
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growth-Promoting Hormone DA-6 Assists Phytoextraction and Detoxification of Cd by Ryegrass.
    He S; Wu Q; He Z
    Int J Phytoremediation; 2015; 17(1-6):597-603. PubMed ID: 25192325
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Endogenous IAA affected fluoranthene accumulation by regulating H
    Xu Y; Li Y; Xiao Z; Zhang X; Jiao J; Zhang H; Li H; Hu F; Xu L
    Ecotoxicol Environ Saf; 2024 May; 276():116315. PubMed ID: 38614001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combination of plant-growth-promoting and fluoranthene-degrading microbes enhances phytoremediation efficiency in the ryegrass rhizosphere.
    Li W; Zhang Z; Sun B; Hu S; Wang D; Hu F; Li H; Xu L; Jiao J
    Environ Sci Pollut Res Int; 2021 Feb; 28(5):6068-6077. PubMed ID: 32989700
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exogenous IAA treatment enhances phytoremediation of soil contaminated with phenanthrene by promoting soil enzyme activity and increasing microbial biomass.
    Li W; Wang D; Hu F; Li H; Ma L; Xu L
    Environ Sci Pollut Res Int; 2016 Jun; 23(11):10656-10664. PubMed ID: 26884240
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction between BSM-contaminated soils and Italian ryegrass.
    Li H; Li N; Lin C; He H; Chen G
    J Environ Sci Health B; 2012; 47(5):427-33. PubMed ID: 22424068
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of simultaneous application of plant growth regulators and bioaugmentation on improvement of phytoremediation of pyrene contaminated soils.
    Rostami S; Azhdarpoor A; Rostami M; Samaei MR
    Chemosphere; 2016 Oct; 161():219-223. PubMed ID: 27434251
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Remediation of lead and cadmium-contaminated soils.
    Salama AK; Osman KA; Gouda NA
    Int J Phytoremediation; 2016; 18(4):364-7. PubMed ID: 26515924
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phytoremediation of pyrene contaminated soils amended with compost and planted with ryegrass and alfalfa.
    Wang MC; Chen YT; Chen SH; Chang Chien SW; Sunkara SV
    Chemosphere; 2012 Apr; 87(3):217-25. PubMed ID: 22245074
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of indole-3-acetic acid supplementation on the physiology of Lolium perenne L. and microbial activity in cadmium-contaminated soil.
    Xu X; Zhou J; Chen K; Wang Y; Ai Y; Zhang C; Zhou S
    Environ Sci Pollut Res Int; 2022 Jul; 29(35):52483-52492. PubMed ID: 35258728
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Beta-cyclodextrin enhanced phytoremediation of aged PCBs-contaminated soil from e-waste recycling area.
    Chen Y; Tang X; Cheema SA; Liu W; Shen C
    J Environ Monit; 2010 Jul; 12(7):1482-9. PubMed ID: 20523947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spacial characteristics of pyrene degradation and soil microbial activity with the distance from the ryegrass (Lolium perenne L.) root surface in a multi-interlayer rhizobox.
    Xie X; Liao M; Fang S; Peng Y; Yang J; Chai J
    J Hazard Mater; 2012 Apr; 213-214():156-60. PubMed ID: 22341493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plant uptake and enhanced dissipation of di(2-ethylhexyl) phthalate (DEHP) in spiked soils by different plant species.
    Li YW; Cai QY; Mo CH; Zeng QY; Lü H; Li QS; Xu GS
    Int J Phytoremediation; 2014; 16(6):609-20. PubMed ID: 24912246
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Phytoremediation of polychlorinated biphenyls contaminated soil by leguminosae-gramineae intercropping: a field trial].
    Tu C; Teng Y; Luo YM; Pan C; Sun XH; Li ZG
    Huan Jing Ke Xue; 2010 Dec; 31(12):3062-6. PubMed ID: 21360900
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arsenic extractability and uptake by velvetgrass Holcus lanatus and ryegrass Lolium perenne in variously treated soils polluted by tailing spills.
    Karczewska A; Lewińska K; Gałka B
    J Hazard Mater; 2013 Nov; 262():1014-21. PubMed ID: 23044199
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Applying carbon dioxide, plant growth-promoting rhizobacterium and EDTA can enhance the phytoremediation efficiency of ryegrass in a soil polluted with zinc, arsenic, cadmium and lead.
    Guo J; Feng R; Ding Y; Wang R
    J Environ Manage; 2014 Aug; 141():1-8. PubMed ID: 24762567
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neotyphodium Endophyte Changes Phytoextraction of Zinc in Festuca arundinacea and Lolium perenne.
    Zamani N; Sabzalian MR; Khoshgoftarmanesh A; Afyuni M
    Int J Phytoremediation; 2015; 17(1-6):456-63. PubMed ID: 25495936
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of salicylic acid and mycorrhizal symbiosis on improvement of fluoranthene phytoremediation using tall fescue (Festuca arundinacea Schreb).
    Rostami M; Rostami S
    Chemosphere; 2019 Oct; 232():70-75. PubMed ID: 31152905
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Effects of individual and combined pollution of Cd and Zn on root exudates and rhizosphere Zn and Cd fractions in ryegrass (Loliurn perenne L.)].
    Xu WH; Wang HX; Liu H; Xiong ZT; Singh B
    Huan Jing Ke Xue; 2007 Sep; 28(9):2089-95. PubMed ID: 17990563
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Auxin-enhanced root growth for phytoremediation of sewage-sludge amended soil.
    Liphadzi MS; Kirkham MB; Paulsen GM
    Environ Technol; 2006 Jun; 27(6):695-704. PubMed ID: 16865925
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.