These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 25495995)

  • 1. Ion-unquenchable and thermally "on-off" reversible room temperature phosphorescence of 3-bromoquinoline induced by supramolecular gels.
    Wang H; Wang H; Yang X; Wang Q; Yang Y
    Langmuir; 2015 Jan; 31(1):486-91. PubMed ID: 25495995
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anti-oxygen-quenching room temperature phosphorescence stabilized by deoxycholate aggregate.
    Li GR; Wu JJ; Jin WJ; Xie JW
    Talanta; 2003 Jun; 60(2-3):555-62. PubMed ID: 18969077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Al
    Xue R; Feng L; Wei S; Dong X; Wang Q; Yang Y; Liao Y; Wang H
    Talanta; 2019 Mar; 194():183-188. PubMed ID: 30609520
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study on the kinetic properties of phosphor in deoxycholate aggregates by phosphorescent quenching methodology.
    Zhang HM; Wang Y; Jin WJ
    J Photochem Photobiol B; 2007 Jul; 88(1):36-42. PubMed ID: 17570675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Supramolecular Purely Organic Room-Temperature Phosphorescence.
    Ma XK; Liu Y
    Acc Chem Res; 2021 Sep; 54(17):3403-3414. PubMed ID: 34403251
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancement of palladium-porphyrin room temperature phosphorescence by alkaline earth metal in deoxycholate aggregates solution.
    Wang YT; Wang XW; Zhang Y
    Photochem Photobiol; 2011; 87(4):772-8. PubMed ID: 21438880
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Room temperature phosphorescence of 9-bromophenanthrene, and the interaction with various metal ions.
    Qin J; Li XM; Feng F; Liang WJ; Tian MZ
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Feb; 102():425-31. PubMed ID: 23261513
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cucurbit[n]urils-induced room temperature phosphorescence of quinoline derivatives.
    Mu L; Yang XB; Xue SF; Zhu QJ; Tao Z; Zeng X
    Anal Chim Acta; 2007 Jul; 597(1):90-6. PubMed ID: 17658317
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Phenomena of supramolecular assembly fluid room temperature phosphorescence (II)--effects of alcohols on room temperature phosphorescence of cyclodextrin/4-iodo-4'-ethyl-biphenyl/bromocyclohexane system].
    Zhu Y; Li L; Tong A
    Guang Pu Xue Yu Guang Pu Fen Xi; 1998 Oct; 18(5):617-21. PubMed ID: 15825381
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NMR characterization of the formation kinetics and structure of di-O-benzylidene sorbitol gels self-assembled in organic solvents.
    VanderHart DL; Douglas JF; Hudson SD; Antonucci JM; Wilder EA
    Langmuir; 2011 Mar; 27(5):1745-57. PubMed ID: 21247189
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Highly Efficient Phosphorescence/Fluorescence Supramolecular Switch Based on a Bromoisoquinoline Cascaded Assembly in Aqueous Solution.
    Dai XY; Hu YY; Sun Y; Huo M; Dong X; Liu Y
    Adv Sci (Weinh); 2022 May; 9(14):e2200524. PubMed ID: 35285166
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of the room-temperature phosphorescence of the 6-bromo-2-naphthol-alpha-cyclodextrin system in aqueous solution.
    Muñoz de la Peña A; Pérez Rodríguez M; Escandar GM
    Talanta; 2000 Apr; 51(5):949-55. PubMed ID: 18967926
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing Purely Organic Room Temperature Phosphorescence via Supramolecular Self-Assembly.
    Zheng H; Zhang Z; Cai S; An Z; Huang W
    Adv Mater; 2024 May; 36(18):e2311922. PubMed ID: 38270348
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Achieving Purely-Organic Room-Temperature Aqueous Phosphorescence via a Two-Component Macromolecular Self-Assembly Strategy.
    Guo W; Wang X; Zhou B; Zhang K
    Chem Asian J; 2020 Nov; 15(21):3469-3474. PubMed ID: 32909394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ascorbic acid induced enhancement of room temperature phosphorescence of sodium tripolyphosphate-capped Mn-Doped ZnS quantum dots: mechanism and bioprobe applications.
    Wang HF; Li Y; Wu YY; He Y; Yan XP
    Chemistry; 2010 Nov; 16(43):12988-94. PubMed ID: 20865703
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metastable Supramolecular Assembly of Simple Monomers Enabled by Confinement: Towards Aqueous Phase Room Temperature Phosphorescence.
    Wang R; Ma D; Kong X; Peng F; Cao X; Zhao Y; Lu C; Shi W
    Angew Chem Int Ed Engl; 2024 Aug; 63(35):e202409162. PubMed ID: 38860443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Water/Light Multiregulated Supramolecular Polypseudorotaxane Gel with Switchable Room-Temperature Phosphorescence.
    Liu S; Zhang Y; Li J; Wang C; Chen Y; Liu Y
    ACS Appl Mater Interfaces; 2024 Jan; 16(4):5149-5157. PubMed ID: 38247294
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Host-guest interactions of 5-fluorouracil in supramolecular organogels.
    Wang H; Zhang J; Zhang W; Yang Y
    Eur J Pharm Biopharm; 2009 Nov; 73(3):357-60. PubMed ID: 19615443
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Room temperature phosphorescence of five PAHs in a synergistic mesoporous silica nanoparticle-deoxycholate substrate.
    Qin J; Li X; Feng F; Pan Q; Bai Y; Zhao J
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 May; 179():233-241. PubMed ID: 28254706
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Unexpected Chromophore-Solvent Reaction Leads to Bicomponent Aggregation-Induced Phosphorescence.
    Chen B; Huang W; Su H; Miao H; Zhang X; Zhang G
    Angew Chem Int Ed Engl; 2020 Jun; 59(25):10023-10026. PubMed ID: 32187795
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.