BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 25496030)

  • 1. Phase I/II study exploring ImMucin, a pan-major histocompatibility complex, anti-MUC1 signal peptide vaccine, in multiple myeloma patients.
    Carmon L; Avivi I; Kovjazin R; Zuckerman T; Dray L; Gatt ME; Or R; Shapira MY
    Br J Haematol; 2015 Apr; 169(1):44-56. PubMed ID: 25496030
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ImMucin: a novel therapeutic vaccine with promiscuous MHC binding for the treatment of MUC1-expressing tumors.
    Kovjazin R; Volovitz I; Kundel Y; Rosenbaum E; Medalia G; Horn G; Smorodinsky NI; Brenner B; Carmon L
    Vaccine; 2011 Jun; 29(29-30):4676-86. PubMed ID: 21570434
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The use of signal peptide domains as vaccine candidates.
    Kovjazin R; Carmon L
    Hum Vaccin Immunother; 2014; 10(9):2733-40. PubMed ID: 25483491
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antigen-specific T-cell immunity in multiple myeloma patients is restored following high-dose therapy: implications for timing of vaccination.
    Svane IM; Nikolajsen K; Johnsen HE
    Scand J Immunol; 2007 Oct; 66(4):465-75. PubMed ID: 17850592
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell surface-associated anti-MUC1-derived signal peptide antibodies: implications for cancer diagnostics and therapy.
    Kovjazin R; Horn G; Smorodinsky NI; Shapira MY; Carmon L
    PLoS One; 2014; 9(1):e85400. PubMed ID: 24416403
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mucin 1-specific active cancer immunotherapy with tecemotide (L-BLP25) in patients with multiple myeloma: an exploratory study.
    Rossmann E; Österborg A; Löfvenberg E; Choudhury A; Forssmann U; von Heydebreck A; Schröder A; Mellstedt H
    Hum Vaccin Immunother; 2014; 10(11):3394-408. PubMed ID: 25483677
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Concurrent allorecognition has a limited impact on posttransplant vaccination.
    Manzo T; Hess Michelini R; Basso V; Ricupito A; Chai JG; Simpson E; Bellone M; Mondino A
    J Immunol; 2011 Feb; 186(3):1361-8. PubMed ID: 21209285
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immune responses detected in urothelial carcinoma patients after vaccination with NY-ESO-1 protein plus BCG and GM-CSF.
    Sharma P; Bajorin DF; Jungbluth AA; Herr H; Old LJ; Gnjatic S
    J Immunother; 2008; 31(9):849-57. PubMed ID: 18833002
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three different vaccines based on the 140-amino acid MUC1 peptide with seven tandemly repeated tumor-specific epitopes elicit distinct immune effector mechanisms in wild-type versus MUC1-transgenic mice with different potential for tumor rejection.
    Soares MM; Mehta V; Finn OJ
    J Immunol; 2001 Jun; 166(11):6555-63. PubMed ID: 11359807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple antigen peptide containing B and T cell epitopes of F1 antigen of Yersinia pestis showed enhanced Th1 immune response in murine model.
    Ali R; Naqvi RA; Kumar S; Bhat AA; Rao DN
    Scand J Immunol; 2013 May; 77(5):361-71. PubMed ID: 23480362
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vaccination of metastatic colorectal cancer patients with matured dendritic cells loaded with multiple major histocompatibility complex class I peptides.
    Kavanagh B; Ko A; Venook A; Margolin K; Zeh H; Lotze M; Schillinger B; Liu W; Lu Y; Mitsky P; Schilling M; Bercovici N; Loudovaris M; Guillermo R; Lee SM; Bender J; Mills B; Fong L
    J Immunother; 2007 Oct; 30(7):762-72. PubMed ID: 17893568
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MUC1-specific immune therapy generates a strong anti-tumor response in a MUC1-tolerant colon cancer model.
    Mukherjee P; Pathangey LB; Bradley JB; Tinder TL; Basu GD; Akporiaye ET; Gendler SJ
    Vaccine; 2007 Feb; 25(9):1607-18. PubMed ID: 17166639
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deoxyribonucleic acid (DNA) encoding a pan-major histocompatibility complex class II peptide analogue augmented antigen-specific cellular immunity and suppressive effects on tumor growth elicited by DNA vaccine immunotherapy.
    Teramoto K; Kontani K; Ozaki Y; Sawai S; Tezuka N; Nagata T; Fujino S; Itoh Y; Taguchi O; Koide Y; Asai T; Ohkubo I; Ogasawara K
    Cancer Res; 2003 Nov; 63(22):7920-5. PubMed ID: 14633722
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intradermal vaccination of MUC1 transgenic mice with MUC1/IL-18 plasmid DNA suppresses experimental pulmonary metastases.
    Shi FF; Gunn GR; Snyder LA; Goletz TJ
    Vaccine; 2007 Apr; 25(17):3338-46. PubMed ID: 17292519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel prostate acid phosphatase-based peptide vaccination strategy induces antigen-specific T-cell responses and limits tumour growth in mice.
    Saif JM; Vadakekolathu J; Rane SS; McDonald D; Ahmad M; Mathieu M; Pockley AG; Durrant L; Metheringham R; Rees RC; McArdle SE
    Eur J Immunol; 2014 Apr; 44(4):994-1004. PubMed ID: 24338683
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tn-MUC1 DC Vaccination of Rhesus Macaques and a Phase I/II Trial in Patients with Nonmetastatic Castrate-Resistant Prostate Cancer.
    Scheid E; Major P; Bergeron A; Finn OJ; Salter RD; Eady R; Yassine-Diab B; Favre D; Peretz Y; Landry C; Hotte S; Mukherjee SD; Dekaban GA; Fink C; Foster PJ; Gaudet J; Gariepy J; Sekaly RP; Lacombe L; Fradet Y; Foley R
    Cancer Immunol Res; 2016 Oct; 4(10):881-892. PubMed ID: 27604597
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surrogate in vitro activation of innate immunity synergizes with interleukin-7 to unleash rapid antigen-driven outgrowth of CD4+ and CD8+ human peripheral blood T-cells naturally recognizing MUC1, HER2/neu and other tumor-associated antigens.
    Pathangey LB; McCurry DB; Gendler SJ; Dominguez AL; Gorman JE; Pathangey G; Mihalik LA; Dang Y; Disis ML; Cohen PA
    Oncotarget; 2017 Feb; 8(7):10785-10808. PubMed ID: 27974697
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vaccination with mRNA-electroporated dendritic cells induces robust tumor antigen-specific CD4+ and CD8+ T cells responses in stage III and IV melanoma patients.
    Aarntzen EH; Schreibelt G; Bol K; Lesterhuis WJ; Croockewit AJ; de Wilt JH; van Rossum MM; Blokx WA; Jacobs JF; Duiveman-de Boer T; Schuurhuis DH; Mus R; Thielemans K; de Vries IJ; Figdor CG; Punt CJ; Adema GJ
    Clin Cancer Res; 2012 Oct; 18(19):5460-70. PubMed ID: 22896657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Autologous melanoma vaccine induces antitumor and self-reactive immune responses that affect patient survival and depend on MHC class II expression on vaccine cells.
    Lotem M; Machlenkin A; Hamburger T; Nissan A; Kadouri L; Frankenburg S; Gimmon Z; Elias O; David IB; Kuznetz A; Shiloni E; Peretz T
    Clin Cancer Res; 2009 Aug; 15(15):4968-77. PubMed ID: 19602547
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vaccination with an adenoviral vector encoding the tumor antigen directly linked to invariant chain induces potent CD4(+) T-cell-independent CD8(+) T-cell-mediated tumor control.
    Sorensen MR; Holst PJ; Pircher H; Christensen JP; Thomsen AR
    Eur J Immunol; 2009 Oct; 39(10):2725-36. PubMed ID: 19637230
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.