BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

376 related articles for article (PubMed ID: 25496090)

  • 21. Genes, pathways and transcription factors involved in seedling stage chilling stress tolerance in indica rice through RNA-Seq analysis.
    Pradhan SK; Pandit E; Nayak DK; Behera L; Mohapatra T
    BMC Plant Biol; 2019 Aug; 19(1):352. PubMed ID: 31412781
    [TBL] [Abstract][Full Text] [Related]  

  • 22. OsACA6, a P-type IIB Ca²⁺ ATPase promotes salinity and drought stress tolerance in tobacco by ROS scavenging and enhancing the expression of stress-responsive genes.
    Huda KM; Banu MS; Garg B; Tula S; Tuteja R; Tuteja N
    Plant J; 2013 Dec; 76(6):997-1015. PubMed ID: 24128296
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparative transcriptome profiling of chilling stress responsiveness in grafted watermelon seedlings.
    Xu J; Zhang M; Liu G; Yang X; Hou X
    Plant Physiol Biochem; 2016 Dec; 109():561-570. PubMed ID: 27837724
    [TBL] [Abstract][Full Text] [Related]  

  • 24. HsfA1d and HsfA1e involved in the transcriptional regulation of HsfA2 function as key regulators for the Hsf signaling network in response to environmental stress.
    Nishizawa-Yokoi A; Nosaka R; Hayashi H; Tainaka H; Maruta T; Tamoi M; Ikeda M; Ohme-Takagi M; Yoshimura K; Yabuta Y; Shigeoka S
    Plant Cell Physiol; 2011 May; 52(5):933-45. PubMed ID: 21471117
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Induction of chilling tolerance and heat shock protein synthesis in rice seedlings by heat shock].
    Huang SZ; Huang XF; Lin XD; Zhang YS; Liu J; Fu JR
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2004 Apr; 30(2):189-94. PubMed ID: 15599046
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Role of the aquaporin PIP1 subfamily in the chilling tolerance of rice.
    Matsumoto T; Lian HL; Su WA; Tanaka D; Liu Cw; Iwasaki I; Kitagawa Y
    Plant Cell Physiol; 2009 Feb; 50(2):216-29. PubMed ID: 19098326
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Differential transcriptome profiling of chilling stress response between shoots and rhizomes of Oryza longistaminata using RNA sequencing.
    Zhang T; Huang L; Wang Y; Wang W; Zhao X; Zhang S; Zhang J; Hu F; Fu B; Li Z
    PLoS One; 2017; 12(11):e0188625. PubMed ID: 29190752
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of the genomic structures and selective expression profiles of nine class I small heat shock protein genes clustered on two chromosomes in rice (Oryza sativa L.).
    Guan JC; Jinn TL; Yeh CH; Feng SP; Chen YM; Lin CY
    Plant Mol Biol; 2004 Nov; 56(5):795-809. PubMed ID: 15803416
    [TBL] [Abstract][Full Text] [Related]  

  • 29. DCW11, down-regulated gene 11 in CW-type cytoplasmic male sterile rice, encoding mitochondrial protein phosphatase 2c is related to cytoplasmic male sterility.
    Fujii S; Toriyama K
    Plant Cell Physiol; 2008 Apr; 49(4):633-40. PubMed ID: 18308761
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Differential physiological and metabolic response to low temperature in two zoysiagrass genotypes native to high and low latitude.
    Li S; Yang Y; Zhang Q; Liu N; Xu Q; Hu L
    PLoS One; 2018; 13(6):e0198885. PubMed ID: 29889884
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification and expression analysis of OsHsfs in rice.
    Wang C; Zhang Q; Shou HX
    J Zhejiang Univ Sci B; 2009 Apr; 10(4):291-300. PubMed ID: 19353748
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Postharvest heat and conditioning treatments activate different molecular responses and reduce chilling injuries in grapefruit.
    Sapitnitskaya M; Maul P; McCollum GT; Guy CL; Weiss B; Samach A; Porat R
    J Exp Bot; 2006; 57(12):2943-53. PubMed ID: 16908505
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cytoplasmic male sterility-related protein kinase, OsNek3, is regulated downstream of mitochondrial protein phosphatase 2C, DCW11.
    Fujii S; Yamada M; Toriyama K
    Plant Cell Physiol; 2009 Apr; 50(4):828-37. PubMed ID: 19224952
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inhibition of a basal transcription factor 3-like gene Osj10gBTF3 in rice results in significant plant miniaturization and typical pollen abortion.
    Wang Y; Zhang X; Lu S; Wang M; Wang L; Wang W; Cao F; Chen H; Wang J; Zhang J; Tu J
    Plant Cell Physiol; 2012 Dec; 53(12):2073-89. PubMed ID: 23147221
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular cloning and characterization of genes encoding Pennisetum glaucum ascorbate peroxidase and heat-shock factor: interlinking oxidative and heat-stress responses.
    Reddy RA; Kumar B; Reddy PS; Mishra RN; Mahanty S; Kaul T; Nair S; Sopory SK; Reddy MK
    J Plant Physiol; 2009 Oct; 166(15):1646-59. PubMed ID: 19450902
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Heat shock factors in rice (Oryza sativa L.): genome-wide expression analysis during reproductive development and abiotic stress.
    Chauhan H; Khurana N; Agarwal P; Khurana P
    Mol Genet Genomics; 2011 Aug; 286(2):171-87. PubMed ID: 21792744
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Functional identification of a trehalose 6-phosphate phosphatase gene that is involved in transient induction of trehalose biosynthesis during chilling stress in rice.
    Habibur Rahman Pramanik M; Imai R
    Plant Mol Biol; 2005 Aug; 58(6):751-762. PubMed ID: 16240171
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Small heat shock proteins and the postharvest chilling tolerance of tomato fruit.
    Ré MD; Gonzalez C; Escobar MR; Sossi ML; Valle EM; Boggio SB
    Physiol Plant; 2017 Feb; 159(2):148-160. PubMed ID: 27545651
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The underlying pathway involved in inter-subspecific hybrid male sterility in rice.
    Shan J; Cai Z; Zhang Y; Xu H; Rao J; Fan Y; Yang J
    Genomics; 2019 Dec; 111(6):1447-1455. PubMed ID: 30336276
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transcriptional profiling of maturing tomato (Solanum lycopersicum L.) microspores reveals the involvement of heat shock proteins, ROS scavengers, hormones, and sugars in the heat stress response.
    Frank G; Pressman E; Ophir R; Althan L; Shaked R; Freedman M; Shen S; Firon N
    J Exp Bot; 2009; 60(13):3891-908. PubMed ID: 19628571
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.