These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 25496137)

  • 1. Toward fundamentals of confined catalysis in carbon nanotubes.
    Xiao J; Pan X; Guo S; Ren P; Bao X
    J Am Chem Soc; 2015 Jan; 137(1):477-82. PubMed ID: 25496137
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of confinement inside carbon nanotubes on catalysis.
    Pan X; Bao X
    Acc Chem Res; 2011 Aug; 44(8):553-62. PubMed ID: 21707038
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing the electronic effect of carbon nanotubes in catalysis: NH(3) synthesis with Ru nanoparticles.
    Guo S; Pan X; Gao H; Yang Z; Zhao J; Bao X
    Chemistry; 2010 May; 16(18):5379-84. PubMed ID: 20376823
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Silver nanoparticles confined in carbon nanotubes: on the understanding of the confinement effect and promotional catalysis for the selective hydrogenation of dimethyl oxalate.
    Zheng J; Duan X; Lin H; Gu Z; Fang H; Li J; Yuan Y
    Nanoscale; 2016 Mar; 8(11):5959-67. PubMed ID: 26924186
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Size-dependence of carbon nanotube confinement in catalysis.
    Xiao J; Pan X; Zhang F; Li H; Bao X
    Chem Sci; 2017 Jan; 8(1):278-283. PubMed ID: 28616131
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of confinement in carbon nanotubes on the activity of Fischer-Tropsch iron catalyst.
    Chen W; Fan Z; Pan X; Bao X
    J Am Chem Soc; 2008 Jul; 130(29):9414-9. PubMed ID: 18576652
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reactions over catalysts confined in carbon nanotubes.
    Pan X; Bao X
    Chem Commun (Camb); 2008 Dec; (47):6271-81. PubMed ID: 19048128
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tuning of redox properties of iron and iron oxides via encapsulation within carbon nanotubes.
    Chen W; Pan X; Bao X
    J Am Chem Soc; 2007 Jun; 129(23):7421-6. PubMed ID: 17508751
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metal-mediated electrochemical oxidation of DNA-wrapped carbon nanotubes.
    Campbell JF; Napier ME; Feldberg SW; Thorp HH
    J Phys Chem B; 2010 Jul; 114(27):8861-70. PubMed ID: 20565119
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and catalytic activities of ferrous centers confined on the interface between carbon nanotubes and humic acid.
    Wang B; Zhou X; Wang D; Yin JJ; Chen H; Gao X; Zhang J; Ibrahim K; Chai Z; Feng W; Zhao Y
    Nanoscale; 2015 Feb; 7(6):2651-8. PubMed ID: 25580558
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of CNTs on structures and catalytic properties of AuPd clusters for H2O2 synthesis.
    Yang HF; Xie PY; Yu HY; Li XN; Wang JG
    Phys Chem Chem Phys; 2012 Dec; 14(48):16654-9. PubMed ID: 23032860
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unique properties of ceria nanoparticles supported on metals: novel inverse ceria/copper catalysts for CO oxidation and the water-gas shift reaction.
    Senanayake SD; Stacchiola D; Rodriguez JA
    Acc Chem Res; 2013 Aug; 46(8):1702-11. PubMed ID: 23286528
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interface-confined oxide nanostructures for catalytic oxidation reactions.
    Fu Q; Yang F; Bao X
    Acc Chem Res; 2013 Aug; 46(8):1692-701. PubMed ID: 23458033
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diffusion of metal in a confined nanospace of carbon nanotubes induced by air oxidation.
    Zhou J; Song H; Chen X; Huo J
    J Am Chem Soc; 2010 Aug; 132(33):11402-5. PubMed ID: 20684548
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vibrational energy transfer between carbon nanotubes and nonaqueous solvents: a molecular dynamics study.
    Nelson TR; Chaban VV; Prezhdo VV; Prezhdo OV
    J Phys Chem B; 2011 May; 115(18):5260-7. PubMed ID: 21082855
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ab initio molecular dynamics simulations of water and an excess proton in water confined in carbon nanotubes.
    Clark JK; Paddison SJ
    Phys Chem Chem Phys; 2014 Sep; 16(33):17756-69. PubMed ID: 25030323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prevalence of Bimolecular Routes in the Activation of Diatomic Molecules with Strong Chemical Bonds (O2, NO, CO, N2) on Catalytic Surfaces.
    Hibbitts D; Iglesia E
    Acc Chem Res; 2015 May; 48(5):1254-62. PubMed ID: 25921328
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Substrate-mediated enhanced activity of Ru nanoparticles in catalytic hydrogenation of benzene.
    Liu X; Meng C; Han Y
    Nanoscale; 2012 Apr; 4(7):2288-95. PubMed ID: 22392351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and catalysis of location-specific cobalt nanoparticles supported by multiwall carbon nanotubes for Fischer-Tropsch synthesis.
    Zhu Y; Ye Y; Zhang S; Leong ME; Tao FF
    Langmuir; 2012 May; 28(21):8275-80. PubMed ID: 22583353
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mesoporous silicas impregnated with cobalt and nickel oxide nanoparticles and the growth of carbon nanotubes there from.
    Barreca D; Blau WJ; Dillon FC; Holmes JD; Kufazvinei C; Morris MA; Spalding TR; Tondello E
    J Nanosci Nanotechnol; 2008 Jul; 8(7):3333-42. PubMed ID: 19051877
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.