BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 25496139)

  • 21. Mechanism underlying the bioleaching process of LiCoO
    Wu W; Liu X; Zhang X; Li X; Qiu Y; Zhu M; Tan W
    J Biosci Bioeng; 2019 Sep; 128(3):344-354. PubMed ID: 31014562
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Manipulation of pyrite colonization and leaching by iron-oxidizing Acidithiobacillus species.
    Bellenberg S; Barthen R; Boretska M; Zhang R; Sand W; Vera M
    Appl Microbiol Biotechnol; 2015 Feb; 99(3):1435-49. PubMed ID: 25381488
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of Nitrate Ions on Acidithiobacillus ferrooxidans-Mediated Bio-oxidation of Ferrous Ions and Pyrite.
    Liu FW; Qiao XX; Xing K; Shi J; Zhou LX; Dong Y; Bi WL; Zhang J
    Curr Microbiol; 2020 Jun; 77(6):1070-1080. PubMed ID: 32036394
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The microbial desulfurization of coal.
    Rossi G
    Adv Biochem Eng Biotechnol; 2014; 142():147-67. PubMed ID: 23576051
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Direct Detection of Fe(II) in Extracellular Polymeric Substances (EPS) at the Mineral-Microbe Interface in Bacterial Pyrite Leaching.
    Mitsunobu S; Zhu M; Takeichi Y; Ohigashi T; Suga H; Jinno M; Makita H; Sakata M; Ono K; Mase K; Takahashi Y
    Microbes Environ; 2016; 31(1):63-9. PubMed ID: 26947441
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Acidophilic Iron- and Sulfur-Oxidizing Bacteria,
    Yi Q; Wu S; Southam G; Robertson L; You F; Liu Y; Wang S; Saha N; Webb R; Wykes J; Chan TS; Lu YR; Huang L
    Environ Sci Technol; 2021 Jun; 55(12):8020-8034. PubMed ID: 34043324
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparative proteomic analysis of sulfur-oxidizing Acidithiobacillus ferrooxidans CCM 4253 cultures having lost the ability to couple anaerobic elemental sulfur oxidation with ferric iron reduction.
    Kucera J; Sedo O; Potesil D; Janiczek O; Zdrahal Z; Mandl M
    Res Microbiol; 2016 Sep; 167(7):587-94. PubMed ID: 27394989
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparison of bioleaching behaviors of different compositional sphalerite using Leptospirillum ferriphilum, Acidithiobacillus ferrooxidans and Acidithiobacillus caldus.
    Xia L; Dai S; Yin C; Hu Y; Liu J; Qiu G
    J Ind Microbiol Biotechnol; 2009 Jun; 36(6):845-51. PubMed ID: 19333635
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification and characterization of an ETHE1-like sulfur dioxygenase in extremely acidophilic Acidithiobacillus spp.
    Wang H; Liu S; Liu X; Li X; Wen Q; Lin J
    Appl Microbiol Biotechnol; 2014 Sep; 98(17):7511-22. PubMed ID: 24893664
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Gene expression modulation by chalcopyrite and bornite in Acidithiobacillus ferrooxidans.
    Ferraz LF; Verde LC; Reis FC; Alexandrino F; Felício AP; Novo MT; Garcia O; Ottoboni LM
    Arch Microbiol; 2010 Jul; 192(7):531-40. PubMed ID: 20480358
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Differential protein expression during growth of Acidithiobacillus ferrooxidans on ferrous iron, sulfur compounds, or metal sulfides.
    Ramírez P; Guiliani N; Valenzuela L; Beard S; Jerez CA
    Appl Environ Microbiol; 2004 Aug; 70(8):4491-8. PubMed ID: 15294777
    [TBL] [Abstract][Full Text] [Related]  

  • 32. L-cysteine addition enhances microbial surface oxidation of coal inorganic sulfur: Complexation of cysteine and pyrite, inhibition of jarosite formation, environmental effects.
    Ye J; Wang S; Zhang P; Nabi M; Tao X; Zhang H; Liu Y
    Environ Res; 2020 Aug; 187():109705. PubMed ID: 32474315
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Iron and sulfur oxidation pathways of Acidithiobacillus ferrooxidans.
    Zhan Y; Yang M; Zhang S; Zhao D; Duan J; Wang W; Yan L
    World J Microbiol Biotechnol; 2019 Mar; 35(4):60. PubMed ID: 30919119
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Global transcriptional responses of Acidithiobacillus ferrooxidans Wenelen under different sulfide minerals.
    Latorre M; Ehrenfeld N; Cortés MP; Travisany D; Budinich M; Aravena A; González M; Bobadilla-Fazzini RA; Parada P; Maass A
    Bioresour Technol; 2016 Jan; 200():29-34. PubMed ID: 26476161
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Kinetics of pyrite, pyrrhotite, and chalcopyrite dissolution by Acidithiobacillus ferrooxidans.
    Kocaman AT; Cemek M; Edwards KJ
    Can J Microbiol; 2016 Aug; 62(8):629-42. PubMed ID: 27332502
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bioleaching of realgar by Acidithiobacillus ferrooxidans using ferrous iron and elemental sulfur as the sole and mixed energy sources.
    Chen P; Yan L; Leng F; Nan W; Yue X; Zheng Y; Feng N; Li H
    Bioresour Technol; 2011 Feb; 102(3):3260-7. PubMed ID: 21146407
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bacterial oxidation of ferrous iron at low temperatures.
    Kupka D; Rzhepishevska OI; Dopson M; Lindström EB; Karnachuk OV; Tuovinen OH
    Biotechnol Bioeng; 2007 Aug; 97(6):1470-8. PubMed ID: 17304566
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Acidithiobacillus ferrooxidans and its potential application.
    Zhang S; Yan L; Xing W; Chen P; Zhang Y; Wang W
    Extremophiles; 2018 Jul; 22(4):563-579. PubMed ID: 29696439
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Genetic engineering of the acidophilic chemolithoautotroph Acidithiobacillus ferrooxidans.
    Jung H; Inaba Y; Banta S
    Trends Biotechnol; 2022 Jun; 40(6):677-692. PubMed ID: 34794837
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biomodification of coal to remove mercury.
    Klasson KT; Borole AP; McKeown CK; Hamilton CY
    Appl Biochem Biotechnol; 2006 Mar; 131(1-3):897-908. PubMed ID: 18563664
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.