These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 25496188)

  • 41. Fruit ripening in Lycium barbarum and Lycium ruthenicum is associated with distinct gene expression patterns.
    Zhao J; Li H; Yin Y; An W; Qin X; Wang Y; Fan Y; Li Y; Cao Y
    FEBS Open Bio; 2020 Aug; 10(8):1550-1567. PubMed ID: 32533890
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Molecular characterization of carotenoid cleavage dioxygenases and the effect of gibberellin, abscisic acid, and sodium chloride on the expression of genes involved in the carotenoid biosynthetic pathway and carotenoid accumulation in the callus of Scutellaria baicalensis Georgi.
    Tuan PA; Kim JK; Lee S; Chae SC; Park SU
    J Agric Food Chem; 2013 Jun; 61(23):5565-72. PubMed ID: 23683071
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Analysis of flavonoid metabolism during fruit development of Lycium chinense.
    Qiao F; Zhang K; Zhou L; Qiu QS; Chen Z; Lu Y; Wang L; Geng G; Xie H
    J Plant Physiol; 2022 Dec; 279():153856. PubMed ID: 36375401
    [TBL] [Abstract][Full Text] [Related]  

  • 44. GmCCD4 controls carotenoid content in soybeans.
    Gao J; Yang S; Tang K; Li G; Gao X; Liu B; Wang S; Feng X
    Plant Biotechnol J; 2021 Apr; 19(4):801-813. PubMed ID: 33131209
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Identification of microRNAs and target genes in the fruit and shoot tip of Lycium chinense: a traditional Chinese medicinal plant.
    Khaldun AB; Huang W; Liao S; Lv H; Wang Y
    PLoS One; 2015; 10(1):e0116334. PubMed ID: 25587984
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Functional characterization of FaCCD1: a carotenoid cleavage dioxygenase from strawberry involved in lutein degradation during fruit ripening.
    García-Limones C; Schnäbele K; Blanco-Portales R; Luz Bellido M; Caballero JL; Schwab W; Muñoz-Blanco J
    J Agric Food Chem; 2008 Oct; 56(19):9277-85. PubMed ID: 18778069
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A carotenoid cleavage dioxygenase from Vitis vinifera L.: functional characterization and expression during grape berry development in relation to C13-norisoprenoid accumulation.
    Mathieu S; Terrier N; Procureur J; Bigey F; Günata Z
    J Exp Bot; 2005 Oct; 56(420):2721-31. PubMed ID: 16131507
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Genomic analysis and gene structure of the plant carotenoid dioxygenase 4 family: a deeper study in Crocus sativus and its allies.
    Ahrazem O; Trapero A; Gómez MD; Rubio-Moraga A; Gómez-Gómez L
    Genomics; 2010 Oct; 96(4):239-50. PubMed ID: 20633636
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Multi-Targeted Metabolic Profiling of Carotenoids, Phenolic Compounds and Primary Metabolites in Goji (
    Dumont D; Danielato G; Chastellier A; Hibrand Saint Oyant L; Fanciullino AL; Lugan R
    Metabolites; 2020 Oct; 10(10):. PubMed ID: 33096702
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Expression Profile of Carotenoid Cleavage Dioxygenase Genes in Summer Squash (Cucurbita pepo L.).
    González-Verdejo CI; Obrero Á; Román B; Gómez P
    Plant Foods Hum Nutr; 2015 Jun; 70(2):200-6. PubMed ID: 25861766
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Riboflavin accumulation and molecular characterization of cDNAs encoding bifunctional GTP cyclohydrolase II/3,4-dihydroxy-2-butanone 4-phosphate synthase, lumazine synthase, and riboflavin synthase in different organs of Lycium chinense plant.
    Tuan PA; Zhao S; Kim JK; Kim YB; Yang J; Li CH; Kim SJ; Arasu MV; Al-Dhabi NA; Park SU
    Molecules; 2014 Oct; 19(11):17141-53. PubMed ID: 25347458
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Characterization of two Vitis vinifera carotenoid cleavage dioxygenases by heterologous expression in Saccharomyces cerevisiae.
    Meng N; Yan GL; Zhang D; Li XY; Duan CQ; Pan QH
    Mol Biol Rep; 2019 Dec; 46(6):6311-6323. PubMed ID: 31535324
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cytosolic and plastoglobule-targeted carotenoid dioxygenases from Crocus sativus are both involved in beta-ionone release.
    Rubio A; Rambla JL; Santaella M; Gómez MD; Orzaez D; Granell A; Gómez-Gómez L
    J Biol Chem; 2008 Sep; 283(36):24816-25. PubMed ID: 18611853
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cloning of a cytosolic ascorbate peroxidase gene from Lycium chinense Mill. and enhanced salt tolerance by overexpressing in tobacco.
    Wu G; Wang G; Ji J; Gao H; Guan W; Wu J; Guan C; Wang Y
    Gene; 2014 Jun; 543(1):85-92. PubMed ID: 24704025
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The potato carotenoid cleavage dioxygenase 4 catalyzes a single cleavage of β-ionone ring-containing carotenes and non-epoxidated xanthophylls.
    Bruno M; Beyer P; Al-Babili S
    Arch Biochem Biophys; 2015 Apr; 572():126-133. PubMed ID: 25703194
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Acid sphingomyelinase as target of Lycium Chinense: promising new action for cell health.
    Ceccarini MR; Codini M; Cataldi S; Vannini S; Lazzarini A; Floridi A; Moretti M; Villarini M; Fioretti B; Beccari T; Albi E
    Lipids Health Dis; 2016 Oct; 15(1):183. PubMed ID: 27756324
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Novel carotenoid cleavage dioxygenase catalyzes the first dedicated step in saffron crocin biosynthesis.
    Frusciante S; Diretto G; Bruno M; Ferrante P; Pietrella M; Prado-Cabrero A; Rubio-Moraga A; Beyer P; Gomez-Gomez L; Al-Babili S; Giuliano G
    Proc Natl Acad Sci U S A; 2014 Aug; 111(33):12246-51. PubMed ID: 25097262
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Carotenoid cleavage dioxygenase (CmCCD4a) contributes to white color formation in chrysanthemum petals.
    Ohmiya A; Kishimoto S; Aida R; Yoshioka S; Sumitomo K
    Plant Physiol; 2006 Nov; 142(3):1193-201. PubMed ID: 16980560
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Functional analysis of multiple carotenogenic genes from Lycium barbarum and Gentiana lutea L. for their effects on beta-carotene production in transgenic tobacco.
    Ji J; Wang G; Wang J; Wang P
    Biotechnol Lett; 2009 Feb; 31(2):305-12. PubMed ID: 18936881
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Evolutionarily distinct carotenoid cleavage dioxygenases are responsible for crocetin production in Buddleja davidii.
    Ahrazem O; Diretto G; Argandoña J; Rubio-Moraga Á; Julve JM; Orzáez D; Granell A; Gómez-Gómez L
    J Exp Bot; 2017 Jul; 68(16):4663-4677. PubMed ID: 28981773
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.