These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 25496249)
1. Structural evolution of 2D microporous covalent triazine-based framework toward the study of high-performance supercapacitors. Hao L; Ning J; Luo B; Wang B; Zhang Y; Tang Z; Yang J; Thomas A; Zhi L J Am Chem Soc; 2015 Jan; 137(1):219-25. PubMed ID: 25496249 [TBL] [Abstract][Full Text] [Related]
2. Highly Microporous Nitrogen-doped Carbon Synthesized from Azine-linked Covalent Organic Framework and its Supercapacitor Function. Kim G; Yang J; Nakashima N; Shiraki T Chemistry; 2017 Dec; 23(69):17504-17510. PubMed ID: 28836305 [TBL] [Abstract][Full Text] [Related]
3. Synthesis and Morphology Evolution of Ultrahigh Content Nitrogen-Doped, Micropore-Dominated Carbon Materials as High-Performance Supercapacitors. Wang DG; Wang H; Lin Y; Yu G; Song M; Zhong W; Kuang GC ChemSusChem; 2018 Nov; 11(22):3932-3940. PubMed ID: 30199610 [TBL] [Abstract][Full Text] [Related]
4. Conductive Microporous Covalent Triazine-Based Framework for High-Performance Electrochemical Capacitive Energy Storage. Li Y; Zheng S; Liu X; Li P; Sun L; Yang R; Wang S; Wu ZS; Bao X; Deng WQ Angew Chem Int Ed Engl; 2018 Jul; 57(27):7992-7996. PubMed ID: 29135063 [TBL] [Abstract][Full Text] [Related]
5. Rational design of covalent triazine frameworks based on pore size and heteroatomic toward high performance supercapacitors. Zhang Y; Zhang B; Chen L; Wang T; Di M; Jiang F; Xu X; Qiao S J Colloid Interface Sci; 2022 Jan; 606(Pt 2):1534-1542. PubMed ID: 34500156 [TBL] [Abstract][Full Text] [Related]
6. Ultrastable Covalent Triazine Organic Framework Based on Anthracene Moiety as Platform for High-Performance Carbon Dioxide Adsorption and Supercapacitors. Mohamed MG; Sharma SU; Liu NY; Mansoure TH; Samy MM; Chaganti SV; Chang YL; Lee JT; Kuo SW Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328595 [TBL] [Abstract][Full Text] [Related]
7. Controllable Nitrogen Doping of High-Surface-Area Microporous Carbons Synthesized from an Organic-Inorganic Sol-Gel Approach for Li-S Cathodes. Chen H; Wei Y; Wang J; Qiao W; Ling L; Long D ACS Appl Mater Interfaces; 2015 Sep; 7(38):21188-97. PubMed ID: 26364810 [TBL] [Abstract][Full Text] [Related]
8. Heteroatom-Containing Porous Carbons Derived from Ionic Liquid-Doped Alkali Organic Salts for Supercapacitors. Zhu J; Xu D; Qian W; Zhang J; Yan F Small; 2016 Apr; 12(14):1935-44. PubMed ID: 26869577 [TBL] [Abstract][Full Text] [Related]
9. A general approach for fabrication of nitrogen-doped graphene sheets and its application in supercapacitors. Wang D; Min Y; Yu Y; Peng B J Colloid Interface Sci; 2014 Mar; 417():270-7. PubMed ID: 24407687 [TBL] [Abstract][Full Text] [Related]
10. In Situ Generation of Electrolyte inside Pyridine-Based Covalent Triazine Frameworks for Direct Supercapacitor Integration. Troschke E; Leistenschneider D; Rensch T; Grätz S; Maschita J; Ehrling S; Klemmed B; Lotsch BV; Eychmüller A; Borchardt L; Kaskel S ChemSusChem; 2020 Jun; 13(12):3192-3198. PubMed ID: 32243702 [TBL] [Abstract][Full Text] [Related]
11. Inherent N,O-containing carbon frameworks as electrode materials for high-performance supercapacitors. Hu F; Wang J; Hu S; Li L; Wang G; Qiu J; Jian X Nanoscale; 2016 Sep; 8(36):16323-16331. PubMed ID: 27714175 [TBL] [Abstract][Full Text] [Related]
12. Sulfur-doped porous reduced graphene oxide hollow nanosphere frameworks as metal-free electrocatalysts for oxygen reduction reaction and as supercapacitor electrode materials. Chen X; Chen X; Xu X; Yang Z; Liu Z; Zhang L; Xu X; Chen Y; Huang S Nanoscale; 2014 Nov; 6(22):13740-7. PubMed ID: 25286286 [TBL] [Abstract][Full Text] [Related]
13. Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors. Hou J; Cao C; Idrees F; Ma X ACS Nano; 2015 Mar; 9(3):2556-64. PubMed ID: 25703427 [TBL] [Abstract][Full Text] [Related]
14. Monodispersed N-doped carbon nanospheres for supercapacitor application. Lee WH; Moon JH ACS Appl Mater Interfaces; 2014 Aug; 6(16):13968-76. PubMed ID: 25078457 [TBL] [Abstract][Full Text] [Related]
15. Effect of Heteroatoms in Ordered Microporous Carbons on Their Electrochemical Capacitance. Itoi H; Nishihara H; Kyotani T Langmuir; 2016 Nov; 32(46):11997-12004. PubMed ID: 27792878 [TBL] [Abstract][Full Text] [Related]
17. Rational design of high-surface-area carbon nanotube/microporous carbon core-shell nanocomposites for supercapacitor electrodes. Yao Y; Ma C; Wang J; Qiao W; Ling L; Long D ACS Appl Mater Interfaces; 2015 Mar; 7(8):4817-25. PubMed ID: 25654564 [TBL] [Abstract][Full Text] [Related]
18. Microporous Crystalline γ-Al Zhang M; Liu L; He T; Li Z; Wu G; Chen P Chem Asian J; 2017 Feb; 12(4):470-475. PubMed ID: 28070940 [TBL] [Abstract][Full Text] [Related]
19. A universal model for nanoporous carbon supercapacitors applicable to diverse pore regimes, carbon materials, and electrolytes. Huang J; Sumpter BG; Meunier V Chemistry; 2008; 14(22):6614-26. PubMed ID: 18576455 [TBL] [Abstract][Full Text] [Related]
20. Carbonaceous electrode materials for supercapacitors. Hao L; Li X; Zhi L Adv Mater; 2013 Jul; 25(28):3899-904. PubMed ID: 24048976 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]