These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 25496470)
1. Efficient delivery of long-chain fatty aldehydes from the Nostoc punctiforme acyl-acyl carrier protein reductase to its cognate aldehyde-deformylating oxygenase. Warui DM; Pandelia ME; Rajakovich LJ; Krebs C; Bollinger JM; Booker SJ Biochemistry; 2015 Feb; 54(4):1006-15. PubMed ID: 25496470 [TBL] [Abstract][Full Text] [Related]
2. Electrostatic interactions at the interface of two enzymes are essential for two-step alkane biosynthesis in cyanobacteria. Chang M; Shimba K; Hayashi Y; Arai M Biosci Biotechnol Biochem; 2020 Feb; 84(2):228-237. PubMed ID: 31601165 [TBL] [Abstract][Full Text] [Related]
3. Structural insights into catalytic mechanism and product delivery of cyanobacterial acyl-acyl carrier protein reductase. Gao Y; Zhang H; Fan M; Jia C; Shi L; Pan X; Cao P; Zhao X; Chang W; Li M Nat Commun; 2020 Mar; 11(1):1525. PubMed ID: 32251275 [TBL] [Abstract][Full Text] [Related]
4. Rapid Reduction of the Diferric-Peroxyhemiacetal Intermediate in Aldehyde-Deformylating Oxygenase by a Cyanobacterial Ferredoxin: Evidence for a Free-Radical Mechanism. Rajakovich LJ; Nørgaard H; Warui DM; Chang WC; Li N; Booker SJ; Krebs C; Bollinger JM; Pandelia ME J Am Chem Soc; 2015 Sep; 137(36):11695-709. PubMed ID: 26284355 [TBL] [Abstract][Full Text] [Related]
5. Recent advances in the improvement of cyanobacterial enzymes for bioalkane production. Hayashi Y; Arai M Microb Cell Fact; 2022 Dec; 21(1):256. PubMed ID: 36503511 [TBL] [Abstract][Full Text] [Related]
6. Improving hydrocarbon production by engineering cyanobacterial acyl-(acyl carrier protein) reductase. Kudo H; Hayashi Y; Arai M Biotechnol Biofuels; 2019; 12():291. PubMed ID: 31890019 [TBL] [Abstract][Full Text] [Related]
7. Comparison of aldehyde-producing activities of cyanobacterial acyl-(acyl carrier protein) reductases. Kudo H; Nawa R; Hayashi Y; Arai M Biotechnol Biofuels; 2016; 9():234. PubMed ID: 27822307 [TBL] [Abstract][Full Text] [Related]
8. Cyanobacterial Enzymes for Bioalkane Production. Arai M; Hayashi Y; Kudo H Adv Exp Med Biol; 2018; 1080():119-154. PubMed ID: 30091094 [TBL] [Abstract][Full Text] [Related]
9. Evidence for only oxygenative cleavage of aldehydes to alk(a/e)nes and formate by cyanobacterial aldehyde decarbonylases. Li N; Chang WC; Warui DM; Booker SJ; Krebs C; Bollinger JM Biochemistry; 2012 Oct; 51(40):7908-16. PubMed ID: 22947199 [TBL] [Abstract][Full Text] [Related]
10. Substrate-triggered addition of dioxygen to the diferrous cofactor of aldehyde-deformylating oxygenase to form a diferric-peroxide intermediate. Pandelia ME; Li N; Nørgaard H; Warui DM; Rajakovich LJ; Chang WC; Booker SJ; Krebs C; Bollinger JM J Am Chem Soc; 2013 Oct; 135(42):15801-12. PubMed ID: 23987523 [TBL] [Abstract][Full Text] [Related]
11. Mechanistic insights from reaction of α-oxiranyl-aldehydes with cyanobacterial aldehyde deformylating oxygenase. Das D; Ellington B; Paul B; Marsh EN ACS Chem Biol; 2014 Feb; 9(2):570-7. PubMed ID: 24313866 [TBL] [Abstract][Full Text] [Related]
12. Alkane production by the marine cyanobacterium Synechococcus sp. NKBG15041c possessing the α-olefin biosynthesis pathway. Yoshino T; Liang Y; Arai D; Maeda Y; Honda T; Muto M; Kakunaka N; Tanaka T Appl Microbiol Biotechnol; 2015 Feb; 99(3):1521-9. PubMed ID: 25527377 [TBL] [Abstract][Full Text] [Related]
13. Comparison of orthologous cyanobacterial aldehyde deformylating oxygenases in the production of volatile C3-C7 alkanes in engineered Patrikainen P; Carbonell V; Thiel K; Aro EM; Kallio P Metab Eng Commun; 2017 Dec; 5():9-18. PubMed ID: 29188180 [No Abstract] [Full Text] [Related]
14. Enhanced production of n-alkanes in Escherichia coli by spatial organization of biosynthetic pathway enzymes. Rahmana Z; Sung BH; Yi JY; Bui le M; Lee JH; Kim SC J Biotechnol; 2014 Dec; 192 Pt A():187-91. PubMed ID: 25456061 [TBL] [Abstract][Full Text] [Related]
15. Engineering self-sufficient aldehyde deformylating oxygenases fused to alternative electron transfer systems for efficient conversion of aldehydes into alkanes. Wang Q; Huang X; Zhang J; Lu X; Li S; Li JJ Chem Commun (Camb); 2014 Apr; 50(33):4299-301. PubMed ID: 24637640 [TBL] [Abstract][Full Text] [Related]
16. A consensus-guided approach yields a heat-stable alkane-producing enzyme and identifies residues promoting thermostability. Shakeel T; Gupta M; Fatma Z; Kumar R; Kumar R; Singh R; Sharma M; Jade D; Gupta D; Fatma T; Yazdani SS J Biol Chem; 2018 Jun; 293(24):9148-9161. PubMed ID: 29632075 [TBL] [Abstract][Full Text] [Related]
17. Conversion of Aldehyde to Alkane by a Peroxoiron(III) Complex: A Functional Model for the Cyanobacterial Aldehyde-Deformylating Oxygenase. Shokri A; Que L J Am Chem Soc; 2015 Jun; 137(24):7686-91. PubMed ID: 26030345 [TBL] [Abstract][Full Text] [Related]
18. The influence of fatty acid supply and aldehyde reductase deletion on cyanobacteria alkane generating pathway in Escherichia coli. Wang J; Yu H; Song X; Zhu K J Ind Microbiol Biotechnol; 2018 May; 45(5):329-334. PubMed ID: 29594624 [TBL] [Abstract][Full Text] [Related]
19. Diverse hydrocarbon biosynthetic enzymes can substitute for olefin synthase in the cyanobacterium Synechococcus sp. PCC 7002. Knoot CJ; Pakrasi HB Sci Rep; 2019 Feb; 9(1):1360. PubMed ID: 30718738 [TBL] [Abstract][Full Text] [Related]
20. Biophysical and structural studies reveal marginal stability of a crucial hydrocarbon biosynthetic enzyme acyl ACP reductase. Sharma A; Shakeel T; Gupta M; Rajacharya GH; Yazdani SS Sci Rep; 2021 Jun; 11(1):12045. PubMed ID: 34103559 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]