These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 2549662)

  • 1. Group I introns: do they only go home?
    Scazzocchio C
    Trends Genet; 1989 Jun; 5(6):168-72. PubMed ID: 2549662
    [No Abstract]   [Full Text] [Related]  

  • 2. Mobile group II introns, DNA circles, reverse transcriptase and senescence (group II introns, transposition, aging, mitochondria, fungi).
    Belcour L; Sainsard-Chanet A; Sellem CH
    Genetica; 1994; 93(1-3):225-8. PubMed ID: 7529208
    [No Abstract]   [Full Text] [Related]  

  • 3. Self-splicing introns as a source for transposable genetic elements.
    Hickson RE
    J Theor Biol; 1989 Nov; 141(1):1-10. PubMed ID: 2483852
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intron mobility. Invasive introns.
    Grivell LA
    Curr Biol; 1994 Feb; 4(2):161-4. PubMed ID: 7953522
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of a model for intron RNA secondary structure relevant to RNA self-splicing--a review.
    Waring RB; Davies RW
    Gene; 1984 Jun; 28(3):277-91. PubMed ID: 6086458
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Introns as relict retrotransposons: implications for the evolutionary origin of eukaryotic mRNA splicing mechanisms.
    Hickey DA; Benkel B
    J Theor Biol; 1986 Aug; 121(3):283-91. PubMed ID: 3025526
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The splicing of maize transposable elements from pre-mRNA--a minireview.
    Wessler SR
    Gene; 1989 Oct; 82(1):127-33. PubMed ID: 2555263
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nuclear mutations that block group II RNA splicing in maize chloroplasts reveal several intron classes with distinct requirements for splicing factors.
    Jenkins BD; Kulhanek DJ; Barkan A
    Plant Cell; 1997 Mar; 9(3):283-96. PubMed ID: 9090875
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative mitochondrial genomics in zygomycetes: bacteria-like RNase P RNAs, mobile elements and a close source of the group I intron invasion in angiosperms.
    Seif E; Leigh J; Liu Y; Roewer I; Forget L; Lang BF
    Nucleic Acids Res; 2005; 33(2):734-44. PubMed ID: 15689432
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bacterial group II introns generate genetic diversity by circularization and trans-splicing from a population of intron-invaded mRNAs.
    LaRoche-Johnston F; Monat C; Coulombe S; Cousineau B
    PLoS Genet; 2018 Nov; 14(11):e1007792. PubMed ID: 30462638
    [TBL] [Abstract][Full Text] [Related]  

  • 11. nMAT4, a maturase factor required for nad1 pre-mRNA processing and maturation, is essential for holocomplex I biogenesis in Arabidopsis mitochondria.
    Cohen S; Zmudjak M; Colas des Francs-Small C; Malik S; Shaya F; Keren I; Belausov E; Many Y; Brown GG; Small I; Ostersetzer-Biran O
    Plant J; 2014 Apr; 78(2):253-68. PubMed ID: 24506473
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mobile introns: retrohoming by complete reverse splicing.
    Eickbush TH
    Curr Biol; 1999 Jan; 9(1):R11-4. PubMed ID: 9889113
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A chloroplast group I intron undergoes the first step of reverse splicing into host cytoplasmic 5.8 S rRNA. Implications for intron-mediated RNA recombination, intron transposition and 5.8 S rRNA structure.
    Thompson AJ; Herrin DL
    J Mol Biol; 1994 Feb; 236(2):455-68. PubMed ID: 8107133
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The RAD52-like protein ODB1 is required for the efficient excision of two mitochondrial introns spliced via first-step hydrolysis.
    Gualberto JM; Le Ret M; Beator B; Kühn K
    Nucleic Acids Res; 2015 Jul; 43(13):6500-10. PubMed ID: 26048959
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integration of a group I intron into a ribosomal RNA sequence promoted by a tyrosyl-tRNA synthetase.
    Mohr G; Lambowitz AM
    Nature; 1991 Nov; 354(6349):164-7. PubMed ID: 1658660
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Birth of new spliceosomal introns in fungi by multiplication of introner-like elements.
    van der Burgt A; Severing E; de Wit PJ; Collemare J
    Curr Biol; 2012 Jul; 22(13):1260-5. PubMed ID: 22658596
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An exceptional group-I intron-like insertion in the SSU rDNA of lichen mycobionts.
    Grube M; Gutmann B; Arup U; de los Rios A; Mattsson J; Wedin M
    Curr Genet; 1999 Jun; 35(5):536-41. PubMed ID: 10369961
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intron splicing suppresses RNA silencing in Arabidopsis.
    Christie M; Croft LJ; Carroll BJ
    Plant J; 2011 Oct; 68(1):159-67. PubMed ID: 21689169
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Group II introns: elaborate ribozymes.
    Jacquier A
    Biochimie; 1996; 78(6):474-87. PubMed ID: 8915537
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Infectious introns.
    Lambowitz AM
    Cell; 1989 Feb; 56(3):323-6. PubMed ID: 2536590
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.