BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 25496725)

  • 1. Underwater drag-reducing effect of superhydrophobic submarine model.
    Zhang S; Ouyang X; Li J; Gao S; Han S; Liu L; Wei H
    Langmuir; 2015; 31(1):587-93. PubMed ID: 25496725
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving the durability of a drag-reducing nanocoating by enhancing its mechanical stability.
    Cheng M; Zhang S; Dong H; Han S; Wei H; Shi F
    ACS Appl Mater Interfaces; 2015 Feb; 7(7):4275-82. PubMed ID: 25644454
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface adhesive forces: a metric describing the drag-reducing effects of superhydrophobic coatings.
    Cheng M; Song M; Dong H; Shi F
    Small; 2015 Apr; 11(14):1665-71. PubMed ID: 25418808
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toward understanding whether superhydrophobic surfaces can really decrease fluidic friction drag.
    Su B; Li M; Lu Q
    Langmuir; 2010 Apr; 26(8):6048-52. PubMed ID: 20000363
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrafast Self-Healing Superhydrophobic Surface for Underwater Drag Reduction.
    Sun P; Feng X; Tian G; Zhang X; Chu J
    Langmuir; 2022 Sep; 38(35):10875-10885. PubMed ID: 36001007
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transparent and durable superhydrophobic coatings for anti-bioadhesion.
    Zhao X; Yu B; Zhang J
    J Colloid Interface Sci; 2017 Sep; 501():222-230. PubMed ID: 28456106
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controllable adhesive superhydrophobic surfaces based on PDMS microwell arrays.
    Yong J; Chen F; Yang Q; Zhang D; Bian H; Du G; Si J; Meng X; Hou X
    Langmuir; 2013 Mar; 29(10):3274-9. PubMed ID: 23391207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low Drag Porous Ship with Superhydrophobic and Superoleophilic Surface for Oil Spills Cleanup.
    Wang G; Zeng Z; Wang H; Zhang L; Sun X; He Y; Li L; Wu X; Ren T; Xue Q
    ACS Appl Mater Interfaces; 2015 Dec; 7(47):26184-94. PubMed ID: 26562211
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of superhydrophobic copper surface on various substrates for roll-off, self-cleaning, and water/oil separation.
    Sasmal AK; Mondal C; Sinha AK; Gauri SS; Pal J; Aditya T; Ganguly M; Dey S; Pal T
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):22034-43. PubMed ID: 25419984
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Superhydrophobicity for antifouling microfluidic surfaces.
    Shirtcliffe NJ; Roach P
    Methods Mol Biol; 2013; 949():269-81. PubMed ID: 23329449
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid formation of superhydrophobic surfaces with fast response wettability transition.
    Zhu X; Zhang Z; Men X; Yang J; Xu X
    ACS Appl Mater Interfaces; 2010 Dec; 2(12):3636-41. PubMed ID: 21073178
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Completely superhydrophobic PDMS surfaces for microfluidics.
    Tropmann A; Tanguy L; Koltay P; Zengerle R; Riegger L
    Langmuir; 2012 Jun; 28(22):8292-5. PubMed ID: 22590992
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Underwater, Multifunctional Superhydrophobic Sensor for Human Motion Detection.
    Ni Y; Huang J; Li S; Wang X; Liu L; Wang M; Chen Z; Li X; Lai Y
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):4740-4749. PubMed ID: 33370088
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bio-inspired dewetted surfaces based on SiC/Si interlocked structures for enhanced-underwater stability and regenerative-drag reduction capability.
    Lee BJ; Zhang Z; Baek S; Kim S; Kim D; Yong K
    Sci Rep; 2016 Apr; 6():24653. PubMed ID: 27095674
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of Bacteria- and Blood-Repellent Superhydrophobic Polyurethane Sponge Materials.
    Ozkan E; Mondal A; Singha P; Douglass M; Hopkins SP; Devine R; Garren M; Manuel J; Warnock J; Handa H
    ACS Appl Mater Interfaces; 2020 Nov; 12(46):51160-51173. PubMed ID: 33143413
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Facile synthesis, growth mechanism and reversible superhydrophobic and superhydrophilic properties of non-flaking CuO nanowires grown from porous copper substrates.
    Zhang Qb; Xu D; Hung TF; Zhang K
    Nanotechnology; 2013 Feb; 24(6):065602. PubMed ID: 23340193
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superhydrophobic activated carbon-coated sponges for separation and absorption.
    Sun H; Li A; Zhu Z; Liang W; Zhao X; La P; Deng W
    ChemSusChem; 2013 Jun; 6(6):1057-62. PubMed ID: 23650204
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Armored Superhydrophobic Surfaces with Excellent Drag Reduction in Complex Environmental Conditions.
    Wang Z; Liu X; Guo Y; Tong B; Zhang G; Liu K; Jiao Y
    Langmuir; 2024 Feb; ():. PubMed ID: 38335533
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stable food grade wax/attapulgite superhydrophobic coatings for anti-adhesion of liquid foods.
    Ding W; Wei J; Zhang J
    J Colloid Interface Sci; 2023 Nov; 650(Pt A):865-874. PubMed ID: 37450975
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and Fabrication of a Hybrid Superhydrophobic-Hydrophilic Surface That Exhibits Stable Dropwise Condensation.
    Mondal B; Mac Giolla Eain M; Xu Q; Egan VM; Punch J; Lyons AM
    ACS Appl Mater Interfaces; 2015 Oct; 7(42):23575-88. PubMed ID: 26372672
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.