BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 25496734)

  • 1. Morphological and physiological responses of maize (Zea mays) exposed to sand contaminated by phenanthrene.
    Dupuy J; Ouvrard S; Leglize P; Sterckeman T
    Chemosphere; 2015 Apr; 124():110-5. PubMed ID: 25496734
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phytotoxicity assay of crop plants to phenanthrene and pyrene contaminants in acidic soil.
    Chouychai W; Thongkukiatkul A; Upatham S; Lee H; Pokethitiyook P; Kruatrachue M
    Environ Toxicol; 2007 Dec; 22(6):597-604. PubMed ID: 18000845
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Roots alterations in presence of phenanthrene may limit co-remediation implementation with Noccaea caerulescens.
    Zelko I; Ouvrard S; Sirguey C
    Environ Sci Pollut Res Int; 2017 Aug; 24(24):19653-19661. PubMed ID: 28681304
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of surfactant amendment to PAHs-contaminated soil for phytoremediation by maize (Zea mays L.).
    Liao C; Liang X; Lu G; Thai T; Xu W; Dang Z
    Ecotoxicol Environ Saf; 2015 Feb; 112():1-6. PubMed ID: 25463846
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect and localization of phenanthrene in maize roots.
    Dupuy J; Leglize P; Vincent Q; Zelko I; Mustin C; Ouvrard S; Sterckeman T
    Chemosphere; 2016 Apr; 149():130-6. PubMed ID: 26855216
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of phenanthrene on primary metabolite profiling in root exudates and maize mucilage.
    Lapie C; Sterckeman T; Paris C; Leglize P
    Environ Sci Pollut Res Int; 2020 Jan; 27(3):3124-3142. PubMed ID: 31838686
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comprehensive study of the impact of polycyclic aromatic hydrocarbons (PAHs) contamination on salt marsh plants Spartina alterniflora: implication for plant-microbe interactions in phytoremediation.
    Hong Y; Liao D; Chen J; Khan S; Su J; Li H
    Environ Sci Pollut Res Int; 2015 May; 22(9):7071-81. PubMed ID: 25501539
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heavy metal induced oxidative damage and root morphology alterations of maize (Zea mays L.) plants and stress mitigation by metal tolerant nitrogen fixing Azotobacter chroococcum.
    Rizvi A; Khan MS
    Ecotoxicol Environ Saf; 2018 Aug; 157():9-20. PubMed ID: 29605647
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microplastics reduced bioavailability and altered toxicity of phenanthrene to maize (Zea mays L.) through modulating rhizosphere microbial community and maize growth.
    Chen X; Zheng X; Fu W; Liu A; Wang W; Wang G; Ji J; Guan C
    Chemosphere; 2023 Dec; 345():140444. PubMed ID: 37839745
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Halophyte Cakile maritima Reduces Phenanthrene Phytotoxicity.
    Shiri M; Rabhi M; El Amrani A; Abdelly C
    Int J Phytoremediation; 2015; 17(10):925-8. PubMed ID: 25581445
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Root response in Pisum sativum and Zea mays under fluoranthene stress: morphological and anatomical traits.
    Kummerová M; Zezulka Š; Babula P; Váňová L
    Chemosphere; 2013 Jan; 90(2):665-73. PubMed ID: 23072784
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of zinc accumulation, allocation, and tolerance in Zea mays L. seedlings: implication for zinc phytoextraction.
    Bashmakov DI; Lukatkin AS; Anjum NA; Ahmad I; Pereira E
    Environ Sci Pollut Res Int; 2015 Oct; 22(20):15443-8. PubMed ID: 25987477
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Laccase as a useful assistant for maize to accelerate the phenanthrene degradation in soil.
    Zheng X; Chen F; Zhu Y; Zhang X; Li Z; Ji J; Wang G; Guan C
    Environ Sci Pollut Res Int; 2024 Jan; 31(3):4848-4863. PubMed ID: 38105330
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uptake and distribution of phenanthrene and pyrene in roots and shoots of maize (Zea mays L.).
    Houshani M; Salehi-Lisar SY; Motafakkerazad R; Movafeghi A
    Environ Sci Pollut Res Int; 2019 Apr; 26(10):9938-9944. PubMed ID: 30739292
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ability of natural attenuation and phytoremediation using maize (Zea mays L.) to decrease soil contents of polycyclic aromatic hydrocarbons (PAHs) derived from biomass fly ash in comparison with PAHs-spiked soil.
    Košnář Z; Mercl F; Tlustoš P
    Ecotoxicol Environ Saf; 2018 May; 153():16-22. PubMed ID: 29407733
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Growth response of Zea mays L. in pyrene-copper co-contaminated soil and the fate of pollutants.
    Lin Q; Shen KL; Zhao HM; Li WH
    J Hazard Mater; 2008 Feb; 150(3):515-21. PubMed ID: 17574741
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uptake of polycyclic aromatic hydrocarbons by maize plants.
    Lin H; Tao S; Zuo Q; Coveney RM
    Environ Pollut; 2007 Jul; 148(2):614-9. PubMed ID: 17254679
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physiological and biochemical responses of rice (Oryza sativa L.) to phenanthrene and pyrene.
    Li JH; Gao Y; Wu SC; Cheung KC; Wang XR; Wong MH
    Int J Phytoremediation; 2008; 10(2):104-16. PubMed ID: 18709924
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contrasting effects of biochar, compost and farm manure on alleviation of nickel toxicity in maize (Zea mays L.) in relation to plant growth, photosynthesis and metal uptake.
    Rehman MZ; Rizwan M; Ali S; Fatima N; Yousaf B; Naeem A; Sabir M; Ahmad HR; Ok YS
    Ecotoxicol Environ Saf; 2016 Nov; 133():218-25. PubMed ID: 27467022
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arbuscular mycorrhizae alleviate negative effects of zinc oxide nanoparticle and zinc accumulation in maize plants--A soil microcosm experiment.
    Wang F; Liu X; Shi Z; Tong R; Adams CA; Shi X
    Chemosphere; 2016 Mar; 147():88-97. PubMed ID: 26761602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.