These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. An Ultrahigh-Performance Liquid Chromatography-Time-of-Flight Mass Spectrometry Metabolomic Approach to Studying the Impact of Moderate Red-Wine Consumption on Urinary Metabolome. Esteban-Fernández A; Ibañez C; Simó C; Bartolomé B; Moreno-Arribas MV J Proteome Res; 2018 Apr; 17(4):1624-1635. PubMed ID: 29485285 [TBL] [Abstract][Full Text] [Related]
3. Comparative study of microbial-derived phenolic metabolites in human feces after intake of gin, red wine, and dealcoholized red wine. Jiménez-Girón A; Queipo-Ortuño MI; Boto-Ordóñez M; Muñoz-González I; Sánchez-Patán F; Monagas M; Martín-Álvarez PJ; Murri M; Tinahones FJ; Andrés-Lacueva C; Bartolomé B; Moreno-Arribas MV J Agric Food Chem; 2013 Apr; 61(16):3909-15. PubMed ID: 23578197 [TBL] [Abstract][Full Text] [Related]
4. Profiling of microbial-derived phenolic metabolites in human feces after moderate red wine intake. Muñoz-González I; Jiménez-Girón A; Martín-Álvarez PJ; Bartolomé B; Moreno-Arribas MV J Agric Food Chem; 2013 Oct; 61(39):9470-9. PubMed ID: 24010549 [TBL] [Abstract][Full Text] [Related]
5. (1)H-NMR-based metabolomic analysis of the effect of moderate wine consumption on subjects with cardiovascular risk factors. Vázquez-Fresno R; Llorach R; Alcaro F; Rodríguez MÁ; Vinaixa M; Chiva-Blanch G; Estruch R; Correig X; Andrés-Lacueva C Electrophoresis; 2012 Aug; 33(15):2345-54. PubMed ID: 22887155 [TBL] [Abstract][Full Text] [Related]
6. Towards the fecal metabolome derived from moderate red wine intake. Jiménez-Girón A; Muñoz-González I; Martínlvarez PJ; Moreno-Arribas MV; Bartolomé B Metabolites; 2014 Dec; 4(4):1101-18. PubMed ID: 25532710 [TBL] [Abstract][Full Text] [Related]
7. Microbial metabolomic fingerprinting in urine after regular dealcoholized red wine consumption in humans. Boto-Ordóñez M; Urpi-Sarda M; Queipo-Ortuño MI; Corella D; Tinahones FJ; Estruch R; Andres-Lacueva C J Agric Food Chem; 2013 Sep; 61(38):9166-75. PubMed ID: 24044534 [TBL] [Abstract][Full Text] [Related]
8. Metabolic fingerprint after acute and under sustained consumption of a functional beverage based on grape skin extract in healthy human subjects. Khymenets O; Andres-Lacueva C; Urpi-Sarda M; Vazquez-Fresno R; Mart MM; Reglero G; Torres M; Llorach R Food Funct; 2015 Apr; 6(4):1288-98. PubMed ID: 25761658 [TBL] [Abstract][Full Text] [Related]
9. Metabolomics study of human urinary metabolome modifications after intake of almond (Prunus dulcis (Mill.) D.A. Webb) skin polyphenols. Llorach R; Garrido I; Monagas M; Urpi-Sarda M; Tulipani S; Bartolome B; Andres-Lacueva C J Proteome Res; 2010 Nov; 9(11):5859-67. PubMed ID: 20853910 [TBL] [Abstract][Full Text] [Related]
10. Development of high-performance chemical isotope labeling LC-MS for profiling the human fecal metabolome. Xu W; Chen D; Wang N; Zhang T; Zhou R; Huan T; Lu Y; Su X; Xie Q; Li L; Li L Anal Chem; 2015 Jan; 87(2):829-36. PubMed ID: 25486321 [TBL] [Abstract][Full Text] [Related]
11. The metabolic fate of red wine and grape juice polyphenols in humans assessed by metabolomics. van Dorsten FA; Grün CH; van Velzen EJ; Jacobs DM; Draijer R; van Duynhoven JP Mol Nutr Food Res; 2010 Jul; 54(7):897-908. PubMed ID: 20013882 [TBL] [Abstract][Full Text] [Related]
12. Metabolomic analyses of faeces reveals malabsorption in cirrhotic patients. Huang HJ; Zhang AY; Cao HC; Lu HF; Wang BH; Xie Q; Xu W; Li LJ Dig Liver Dis; 2013 Aug; 45(8):677-82. PubMed ID: 23384618 [TBL] [Abstract][Full Text] [Related]
13. Metabolomics unveils urinary changes in subjects with metabolic syndrome following 12-week nut consumption. Tulipani S; Llorach R; Jáuregui O; López-Uriarte P; Garcia-Aloy M; Bullo M; Salas-Salvadó J; Andrés-Lacueva C J Proteome Res; 2011 Nov; 10(11):5047-58. PubMed ID: 21905751 [TBL] [Abstract][Full Text] [Related]
14. The effects of grape and red wine polyphenols on gut microbiota - A systematic review. Nash V; Ranadheera CS; Georgousopoulou EN; Mellor DD; Panagiotakos DB; McKune AJ; Kellett J; Naumovski N Food Res Int; 2018 Nov; 113():277-287. PubMed ID: 30195522 [TBL] [Abstract][Full Text] [Related]
15. The potential of nanoflow liquid chromatography-nano electrospray ionisation-mass spectrometry for global profiling the faecal metabolome. Chetwynd AJ; Ogilvie LA; Nzakizwanayo J; Pazdirek F; Hoch J; Dedi C; Gilbert D; Abdul-Sada A; Jones BV; Hill EM J Chromatogr A; 2019 Aug; 1600():127-136. PubMed ID: 31047664 [TBL] [Abstract][Full Text] [Related]
16. Development and validation of an UHPLC-HRMS protocol for the analysis of flavan-3-ol metabolites and catabolites in urine, plasma and feces of rats fed a red wine proanthocyanidin extract. Pereira-Caro G; Ordóñez JL; Ludwig I; Gaillet S; Mena P; Del Rio D; Rouanet JM; Bindon KA; Moreno-Rojas JM; Crozier A Food Chem; 2018 Jun; 252():49-60. PubMed ID: 29478563 [TBL] [Abstract][Full Text] [Related]
17. Gut and microbial resveratrol metabolite profiling after moderate long-term consumption of red wine versus dealcoholized red wine in humans by an optimized ultra-high-pressure liquid chromatography tandem mass spectrometry method. Rotches-Ribalta M; Urpi-Sarda M; Llorach R; Boto-Ordoñez M; Jauregui O; Chiva-Blanch G; Perez-Garcia L; Jaeger W; Guillen M; Corella D; Tinahones FJ; Estruch R; Andres-Lacueva C J Chromatogr A; 2012 Nov; 1265():105-13. PubMed ID: 23089514 [TBL] [Abstract][Full Text] [Related]
18. A red wine intervention does not modify plasma trimethylamine N-oxide but is associated with broad shifts in the plasma metabolome and gut microbiota composition. Haas EA; Saad MJA; Santos A; Vitulo N; Lemos WJF; Martins AMA; Picossi CRC; Favarato D; Gaspar RS; Magro DO; Libby P; Laurindo FRM; Da Luz PL; Am J Clin Nutr; 2022 Dec; 116(6):1515-1529. PubMed ID: 36205549 [TBL] [Abstract][Full Text] [Related]
19. Application of ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry to identify curcumin metabolites produced by human intestinal bacteria. Lou Y; Zheng J; Hu H; Lee J; Zeng S J Chromatogr B Analyt Technol Biomed Life Sci; 2015 Mar; 985():38-47. PubMed ID: 25658514 [TBL] [Abstract][Full Text] [Related]
20. CE/LC-MS multiplatform for broad metabolomic analysis of dietary polyphenols effect on colon cancer cells proliferation. Ibáñez C; Simó C; García-Cañas V; Gómez-Martínez A; Ferragut JA; Cifuentes A Electrophoresis; 2012 Aug; 33(15):2328-36. PubMed ID: 22887153 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]