These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 25497212)

  • 1. Real-time protein NMR spectroscopy and investigation of assisted protein folding.
    Kumar A; Balbach J
    Biochim Biophys Acta; 2015 Oct; 1850(10):1965-72. PubMed ID: 25497212
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein folding by NMR.
    Zhuravleva A; Korzhnev DM
    Prog Nucl Magn Reson Spectrosc; 2017 May; 100():52-77. PubMed ID: 28552172
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing invisible, low-populated States of protein molecules by relaxation dispersion NMR spectroscopy: an application to protein folding.
    Korzhnev DM; Kay LE
    Acc Chem Res; 2008 Mar; 41(3):442-51. PubMed ID: 18275162
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relaxation dispersion NMR spectroscopy as a tool for detailed studies of protein folding.
    Neudecker P; Lundström P; Kay LE
    Biophys J; 2009 Mar; 96(6):2045-54. PubMed ID: 19289032
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein folding studied by real-time NMR spectroscopy.
    Zeeb M; Balbach J
    Methods; 2004 Sep; 34(1):65-74. PubMed ID: 15283916
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Folding and domain-domain interactions of the chaperone PapD measured by 19F NMR.
    Bann JG; Frieden C
    Biochemistry; 2004 Nov; 43(43):13775-86. PubMed ID: 15504040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chaperones and chaperone-substrate complexes: Dynamic playgrounds for NMR spectroscopists.
    Burmann BM; Hiller S
    Prog Nucl Magn Reson Spectrosc; 2015 Apr; 86-87():41-64. PubMed ID: 25919198
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-pressure NMR spectroscopy for characterizing folding intermediates and denatured states of proteins.
    Kamatari YO; Kitahara R; Yamada H; Yokoyama S; Akasaka K
    Methods; 2004 Sep; 34(1):133-43. PubMed ID: 15283922
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hsp90 structure and function studied by NMR spectroscopy.
    Didenko T; Duarte AM; Karagöz GE; Rüdiger SG
    Biochim Biophys Acta; 2012 Mar; 1823(3):636-47. PubMed ID: 22155720
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Residue-specific real-time NMR diffusion experiments define the association states of proteins during folding.
    Buevich AV; Baum J
    J Am Chem Soc; 2002 Jun; 124(24):7156-62. PubMed ID: 12059241
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NMR as a tool to identify and characterize protein folding intermediates.
    Neira JL
    Arch Biochem Biophys; 2013 Mar; 531(1-2):90-9. PubMed ID: 22982558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The use of high-pressure nuclear magnetic resonance to study protein folding.
    Lassalle MW; Akasaka K
    Methods Mol Biol; 2007; 350():21-38. PubMed ID: 16957315
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-time and equilibrium (19)F-NMR studies reveal the role of domain-domain interactions in the folding of the chaperone PapD.
    Bann JG; Pinkner J; Hultgren SJ; Frieden C
    Proc Natl Acad Sci U S A; 2002 Jan; 99(2):709-14. PubMed ID: 11792867
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-populated folding intermediates of Fyn SH3 characterized by relaxation dispersion NMR.
    Korzhnev DM; Salvatella X; Vendruscolo M; Di Nardo AA; Davidson AR; Dobson CM; Kay LE
    Nature; 2004 Jul; 430(6999):586-90. PubMed ID: 15282609
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring the Protein Folding Pathway with High-Pressure NMR: Steady-State and Kinetics Studies.
    Roche J; Dellarole M; Royer CA; Roumestand C
    Subcell Biochem; 2015; 72():261-78. PubMed ID: 26174386
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Population and structure determination of hidden folding intermediates by native-state hydrogen exchange-directed protein engineering and nuclear magnetic resonance.
    Bai Y; Feng H; Zhou Z
    Methods Mol Biol; 2007; 350():69-81. PubMed ID: 16957318
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Real-time NMR characterization of structure and dynamics in a transiently populated protein folding intermediate.
    Rennella E; Cutuil T; Schanda P; Ayala I; Forge V; Brutscher B
    J Am Chem Soc; 2012 May; 134(19):8066-9. PubMed ID: 22554021
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transient enzyme-substrate recognition monitored by real-time NMR.
    Haupt C; Patzschke R; Weininger U; Gröger S; Kovermann M; Balbach J
    J Am Chem Soc; 2011 Jul; 133(29):11154-62. PubMed ID: 21661729
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binding and folding: in search of intramolecular chaperone-like building block fragments.
    Ma B; Tsai CJ; Nussinov R
    Protein Eng; 2000 Sep; 13(9):617-27. PubMed ID: 11054456
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-field EPR on membrane proteins - crossing the gap to NMR.
    Möbius K; Lubitz W; Savitsky A
    Prog Nucl Magn Reson Spectrosc; 2013 Nov; 75():1-49. PubMed ID: 24160760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.