These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 25498202)

  • 1. Galactose grafting on poly(ε-caprolactone) substrates for tissue engineering: a preliminary study.
    Russo L; Russo T; Battocchio C; Taraballi F; Gloria A; D'Amora U; De Santis R; Polzonetti G; Nicotra F; Ambrosio L; Cipolla L
    Carbohydr Res; 2015 Mar; 405():39-46. PubMed ID: 25498202
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of surface modification on the mechanical and structural properties of nanofibrous poly(ε-caprolactone)/forsterite scaffold for tissue engineering applications.
    Kharaziha M; Fathi MH; Edris H
    Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4512-9. PubMed ID: 24094153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New generation poly(ε-caprolactone)/gel-derived bioactive glass composites for bone tissue engineering: Part I. Material properties.
    Dziadek M; Menaszek E; Zagrajczuk B; Pawlik J; Cholewa-Kowalska K
    Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():9-21. PubMed ID: 26249560
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Degradation of Poly(ε-caprolactone) and bio-interactions with mouse bone marrow mesenchymal stem cells.
    V S S; P V M
    Colloids Surf B Biointerfaces; 2018 Mar; 163():107-118. PubMed ID: 29287231
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface-modified electrospun poly(epsilon-caprolactone) scaffold with improved optical transparency and bioactivity for damaged ocular surface reconstruction.
    Sharma S; Gupta D; Mohanty S; Jassal M; Agrawal AK; Tandon R
    Invest Ophthalmol Vis Sci; 2014 Feb; 55(2):899-907. PubMed ID: 24425860
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of nanofibrous scaffolds containing gum tragacanth/poly (ε-caprolactone) for application as skin scaffolds.
    Ranjbar-Mohammadi M; Bahrami SH
    Mater Sci Eng C Mater Biol Appl; 2015 Mar; 48():71-9. PubMed ID: 25579898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thin polymer brush decouples biomaterial's micro-/nanotopology and stem cell adhesion.
    Klein Gunnewiek M; Benetti EM; Di Luca A; van Blitterswijk CA; Moroni L; Vancso GJ
    Langmuir; 2013 Nov; 29(45):13843-52. PubMed ID: 24117174
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distinct cell responses to substrates consisting of poly(ε-caprolactone) and poly(propylene fumarate) in the presence or absence of cross-links.
    Wang K; Cai L; Hao F; Xu X; Cui M; Wang S
    Biomacromolecules; 2010 Oct; 11(10):2748-59. PubMed ID: 20822174
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of poly(ε-caprolactone) surface properties for apatite formation and improved osteogenic stimulation.
    Choong C; Yuan S; Thian ES; Oyane A; Triffitt J
    J Biomed Mater Res A; 2012 Feb; 100(2):353-61. PubMed ID: 22065559
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The first systematic analysis of 3D rapid prototyped poly(ε-caprolactone) scaffolds manufactured through BioCell printing: the effect of pore size and geometry on compressive mechanical behaviour and in vitro hMSC viability.
    Domingos M; Intranuovo F; Russo T; De Santis R; Gloria A; Ambrosio L; Ciurana J; Bartolo P
    Biofabrication; 2013 Dec; 5(4):045004. PubMed ID: 24192056
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gravity spun polycaprolactone fibres for soft tissue engineering: interaction with fibroblasts and myoblasts in cell culture.
    Williamson MR; Adams EF; Coombes AG
    Biomaterials; 2006 Mar; 27(7):1019-26. PubMed ID: 16054685
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cellular interactions on hierarchical poly(ε-caprolactone) nanowire micropatterns.
    Du K; Gan Z
    ACS Appl Mater Interfaces; 2012 Sep; 4(9):4643-50. PubMed ID: 22873768
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional poly(ε-caprolactone) bioactive scaffolds with controlled structural and surface properties.
    Gloria A; Causa F; Russo T; Battista E; Della Moglie R; Zeppetelli S; De Santis R; Netti PA; Ambrosio L
    Biomacromolecules; 2012 Nov; 13(11):3510-21. PubMed ID: 23030686
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biocompatibility and mesenchymal stem cell response to poly(epsilon-caprolactone) nanowire surfaces for orthopedic tissue engineering.
    Porter JR; Henson A; Ryan S; Popat KC
    Tissue Eng Part A; 2009 Sep; 15(9):2547-59. PubMed ID: 19326968
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface properties and biocompatibility of solvent-cast poly[-caprolactone] films.
    Tang ZG; Black RA; Curran JM; Hunt JA; Rhodes NP; Williams DF
    Biomaterials; 2004 Aug; 25(19):4741-8. PubMed ID: 15120520
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydroxyapatite formation on sol-gel derived poly(ε-caprolactone)/bioactive glass hybrid biomaterials.
    Allo BA; Rizkalla AS; Mequanint K
    ACS Appl Mater Interfaces; 2012 Jun; 4(6):3148-56. PubMed ID: 22625179
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Galactosylated poly(ε-caprolactone) membrane promoted liver-specific functions of HepG2 cells in vitro.
    Zhang Y; Zhang Y; Chen M; Zhou Y; Lang M
    Mater Sci Eng C Mater Biol Appl; 2014 Aug; 41():52-8. PubMed ID: 24907736
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasma treatment of electrospun PCL random nanofiber meshes (NFMs) for biological property improvement.
    Yan D; Jones J; Yuan XY; Xu XH; Sheng J; Lee JC; Ma GQ; Yu QS
    J Biomed Mater Res A; 2013 Apr; 101(4):963-72. PubMed ID: 22965926
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The use of thermal treatments to enhance the mechanical properties of electrospun poly(epsilon-caprolactone) scaffolds.
    Lee SJ; Oh SH; Liu J; Soker S; Atala A; Yoo JJ
    Biomaterials; 2008 Apr; 29(10):1422-30. PubMed ID: 18096219
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sol-gel derived nanoscale bioactive glass (NBG) particles reinforced poly(ε-caprolactone) composites for bone tissue engineering.
    Lei B; Shin KH; Noh DY; Jo IH; Koh YH; Kim HE; Kim SE
    Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1102-8. PubMed ID: 23827548
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.