These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 25498457)
1. A qualitative and quantitative high-throughput assay for screening of gluconate high-yield strains by Aspergillus niger. Shi F; Tan J; Chu J; Wang Y; Zhuang Y; Zhang S J Microbiol Methods; 2015 Feb; 109():134-9. PubMed ID: 25498457 [TBL] [Abstract][Full Text] [Related]
2. Development of a method for efficient cost-effective screening of Aspergillus niger mutants having increased production of glucoamylase. Zhu X; Arman B; Chu J; Wang Y; Zhuang Y Biotechnol Lett; 2017 May; 39(5):739-744. PubMed ID: 28138854 [TBL] [Abstract][Full Text] [Related]
3. A note on crossing experiments with Aspergillus niger for the production of calcium gluconate. Kundu PN; Das A J Appl Bacteriol; 1985 Jul; 59(1):1-5. PubMed ID: 4030528 [TBL] [Abstract][Full Text] [Related]
4. Gluconic acid production by Aspergillus niger mutant ORS-4.410 in submerged and solid state surface fermentation. Singh OV; Sharma A; Singh RP Indian J Exp Biol; 2001 Jul; 39(7):691-6. PubMed ID: 12019764 [TBL] [Abstract][Full Text] [Related]
5. Utilization of gluconate by Aspergillus niger. II. Enzymes of degradation pathways and main end products. Müller HM Zentralbl Mikrobiol; 1986; 141(6):461-9. PubMed ID: 3099500 [TBL] [Abstract][Full Text] [Related]
6. Kinetic analysis of sodium gluconate production by Aspergillus niger with different inlet oxygen concentrations. Tian X; Shen Y; Zhuang Y; Zhao W; Hang H; Chu J Bioprocess Biosyst Eng; 2018 Nov; 41(11):1697-1706. PubMed ID: 30062601 [TBL] [Abstract][Full Text] [Related]
7. High efficiency cell-recycle continuous sodium gluconate production by Aspergillus niger using on-line physiological parameters association analysis to regulate feed rate rationally. Lu F; Li C; Wang Z; Zhao W; Chu J; Zhuang Y; Zhang S Bioresour Technol; 2016 Nov; 220():433-441. PubMed ID: 27611026 [TBL] [Abstract][Full Text] [Related]
8. A high-throughput colorimetric assay for screening halohydrin dehalogenase saturation mutagenesis libraries. Tang L; Li Y; Wang X J Biotechnol; 2010 Jun; 147(3-4):164-8. PubMed ID: 20399816 [TBL] [Abstract][Full Text] [Related]
9. Optimisation of fermentation conditions for gluconic acid production by a mutant of Aspergillus niger. Singh OV; Sharma A; Singh RP Indian J Exp Biol; 2001 Nov; 39(11):1136-43. PubMed ID: 11906107 [TBL] [Abstract][Full Text] [Related]
10. Effect of ammonium and nitrate ratio on glucose oxidase activity during gluconic acid fermentation by a mutant strain of Aspergillus niger. Ray S; Banik AK Indian J Exp Biol; 1999 Apr; 37(4):391-5. PubMed ID: 10641175 [TBL] [Abstract][Full Text] [Related]
11. Kinetics of the gluconic acid biosynthesis by strain Aspergillus niger 13-73. Tsekova K; Vicheva A Acta Microbiol Bulg; 1993; 30():51-5. PubMed ID: 8285133 [TBL] [Abstract][Full Text] [Related]
12. Fed-batch production of gluconic acid by terpene-treated Aspergillus niger spores. Ramachandran S; Fontanille P; Pandey A; Larroche C Appl Biochem Biotechnol; 2008 Dec; 151(2-3):413-23. PubMed ID: 18427736 [TBL] [Abstract][Full Text] [Related]
13. Utilization of gluconate by Aspergillus niger. I. Enzymes of phosphorylating and nonphosphorylating pathways. Müller HM Zentralbl Mikrobiol; 1985; 140(6):475-84. PubMed ID: 4072456 [TBL] [Abstract][Full Text] [Related]
14. A simple novel approach for real-time monitoring of sodium gluconate production by on-line physiological parameters in batch fermentation by Aspergillus niger. Lu F; Wang Z; Zhao W; Chu J; Zhuang Y Bioresour Technol; 2016 Feb; 202():133-41. PubMed ID: 26706727 [TBL] [Abstract][Full Text] [Related]
15. Development of a mutant strain of Aspergillus niger and optimization of some physical factors for improved calcium gluconate production. Ray S; Banik AK Indian J Exp Biol; 1994 Dec; 32(12):865-8. PubMed ID: 7896318 [TBL] [Abstract][Full Text] [Related]
16. Oxygen-enriched fermentation of sodium gluconate by Aspergillus niger and its impact on intracellular metabolic flux distributions. Shen Y; Tian X; Zhao W; Hang H; Chu J Bioprocess Biosyst Eng; 2018 Jan; 41(1):77-86. PubMed ID: 28980124 [TBL] [Abstract][Full Text] [Related]
17. Development of a strategy for the screening of α-glucosidase-producing microorganisms. Zhou B; Huang N; Zeng W; Zhang H; Chen G; Liang Z J Microbiol; 2020 Feb; 58(2):163-172. PubMed ID: 31993989 [TBL] [Abstract][Full Text] [Related]
18. Fate of pyruvate, formed nonphosphorolytically from gluconate by extracts of Aspergillus niger. Elzainy TA; Hassan MM; Allam AM Zentralbl Bakteriol Parasitenkd Infektionskr Hyg; 1975; 130(3):201-5. PubMed ID: 1242551 [No Abstract] [Full Text] [Related]
19. Bioconversion of grape must into modulated gluconic acid production by Aspergillus niger ORS-4.410. Singh OV; Singh RP J Appl Microbiol; 2006 May; 100(5):1114-22. PubMed ID: 16630012 [TBL] [Abstract][Full Text] [Related]
20. Development of colorimetric HTS assay of cytochrome p450 for ortho-specific hydroxylation, and engineering of CYP102D1 with enhanced catalytic activity and regioselectivity. Choi KY; Jung EO; Yun H; Yang YH; Kazlauskas RJ; Kim BG Chembiochem; 2013 Jul; 14(10):1231-8. PubMed ID: 23780920 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]