BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 2549865)

  • 1. Quinoprotein D-glucose dehydrogenases in Acinetobacter calcoaceticus LMD 79.41: purification and characterization of the membrane-bound enzyme distinct from the soluble enzyme.
    Matsushita K; Shinagawa E; Adachi O; Ameyama M
    Antonie Van Leeuwenhoek; 1989 May; 56(1):63-72. PubMed ID: 2549865
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quinoprotein D-glucose dehydrogenase of the Acinetobacter calcoaceticus respiratory chain: membrane-bound and soluble forms are different molecular species.
    Matsushita K; Shinagawa E; Adachi O; Ameyama M
    Biochemistry; 1989 Jul; 28(15):6276-80. PubMed ID: 2551369
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Different forms of quinoprotein aldose-(glucose-) dehydrogenase in Acinetobacter calcoaceticus.
    Duine JA; Jzn JF; Van der Meer R
    Arch Microbiol; 1982 Feb; 131(1):27-31. PubMed ID: 7065812
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reconstitution of membrane-integrated quinoprotein glucose dehydrogenase apoenzyme with PQQ and the holoenzyme's mechanism of action.
    Dewanti AR; Duine JA
    Biochemistry; 1998 May; 37(19):6810-8. PubMed ID: 9578566
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glucose dehydrogenase from Acinetobacter calcoaceticus: a 'quinoprotein'.
    Duine JA; Frank J; van Zeeland JK
    FEBS Lett; 1979 Dec; 108(2):443-6. PubMed ID: 520586
    [No Abstract]   [Full Text] [Related]  

  • 6. Ca2+ and its substitutes have two different binding sites and roles in soluble, quinoprotein (pyrroloquinoline-quinone-containing) glucose dehydrogenase.
    Olsthoorn AJ; Otsuki T; Duine JA
    Eur J Biochem; 1997 Jul; 247(2):659-65. PubMed ID: 9266710
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reactivity with ubiquinone of quinoprotein D-glucose dehydrogenase from Gluconobacter suboxydans.
    Matsushita K; Shinagawa E; Adachi O; Ameyama M
    J Biochem; 1989 Apr; 105(4):633-7. PubMed ID: 2547757
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PQQ as redox shuttle for quinoprotein glucose dehydrogenase.
    Jin W; Wollenberger U; Scheller FW
    Biol Chem; 1998; 379(8-9):1207-11. PubMed ID: 9792456
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reversible thermal inactivation of the quinoprotein glucose dehydrogenase from Acinetobacter calcoaceticus. Ca2+ ions are necessary for re-activation.
    Geiger O; Görisch H
    Biochem J; 1989 Jul; 261(2):415-21. PubMed ID: 2549970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physiological significance and bioenergetic aspects of glucose dehydrogenase.
    Neijssel OM; Hommes RW; Postma PW; Tempest DW
    Antonie Van Leeuwenhoek; 1989 May; 56(1):51-61. PubMed ID: 2549864
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Replacement of methoxatin by 4,7-phenanthroline-5,6-dione and the inability of other phenanthroline quinones, as well as 7,9-di-decarboxy methoxatin, to serve as cofactors for the methoxatin-requiring glucose dehydrogenase of Acinetobacter calcoaceticus.
    Conlin M; Forrest HS; Bruice TC
    Biochem Biophys Res Commun; 1985 Sep; 131(2):564-6. PubMed ID: 4052066
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The oxidation of glucose by Acinetobacter calcoaceticus: interaction of the quinoprotein glucose dehydrogenase with the electron transport chain.
    Beardmore-Gray M; Anthony C
    J Gen Microbiol; 1986 May; 132(5):1257-68. PubMed ID: 3021895
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Haem-containing protein complexes of Acinetobacter calcoaceticus as secondary electron acceptors for quinoprotein glucose dehydrogenase.
    Geerlof A; Dokter P; van Wielink JE; Duine JA
    Antonie Van Leeuwenhoek; 1989 May; 56(1):81-4. PubMed ID: 2774522
    [No Abstract]   [Full Text] [Related]  

  • 14. Energy transduction by electron transfer via a pyrrolo-quinoline quinone-dependent glucose dehydrogenase in Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter calcoaceticus (var. lwoffi).
    van Schie BJ; Hellingwerf KJ; van Dijken JP; Elferink MG; van Dijl JM; Kuenen JG; Konings WN
    J Bacteriol; 1985 Aug; 163(2):493-9. PubMed ID: 3926746
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Purification and characterization of quinoprotein glucose dehydrogenase from Acinetobacter calcoaceticus L.M.D. 79.41.
    Dokter P; Frank J; Duine JA
    Biochem J; 1986 Oct; 239(1):163-7. PubMed ID: 3800975
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cytochrome b-562 from Acinetobacter calcoaceticus L.M.D. 79.41. Its characteristics and role as electron acceptor for quinoprotein glucose dehydrogenase.
    Dokter P; van Wielink JE; van Kleef MA; Duine JA
    Biochem J; 1988 Aug; 254(1):131-8. PubMed ID: 3178744
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reconstitution of glucose dehydrogenases using synthetic methoxatin.
    Kilty CG; Maruyama K; Forrest HS
    Arch Biochem Biophys; 1982 Oct; 218(2):623-5. PubMed ID: 7159101
    [No Abstract]   [Full Text] [Related]  

  • 18. New quinoproteins in oxidative fermentation.
    Adachi O; Moonmangmee D; Shinagawa E; Toyama H; Yamada M; Matsushita K
    Biochim Biophys Acta; 2003 Apr; 1647(1-2):10-7. PubMed ID: 12686101
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for electron transfer via ubiquinone between quinoproteins D-glucose dehydrogenase and alcohol dehydrogenase of Gluconobacter suboxydans.
    Shinagawa E; Matsushita K; Adachi O; Ameyama M
    J Biochem; 1990 Jun; 107(6):863-7. PubMed ID: 2391347
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing reactivity of PQQ-dependent carbohydrate dehydrogenases using artificial electron acceptor.
    Tetianec L; Bratkovskaja I; Kulys J; Casaite V; Meskys R
    Appl Biochem Biotechnol; 2011 Feb; 163(3):404-14. PubMed ID: 20936374
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.