These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Comparison of gasolines using gas chromatography-mass spectrometry and target ion response. Barnes AT; Dolan JA; Kuk RJ; Siegel JA J Forensic Sci; 2004 Sep; 49(5):1018-23. PubMed ID: 15461104 [TBL] [Abstract][Full Text] [Related]
3. Study of acidified ignitable liquid residues in fire debris by solid-phase microextraction with gas chromatography and mass spectrometry. Martín-Alberca C; García-Ruiz C; Delémont O J Sep Sci; 2015 Sep; 38(18):3218-3227. PubMed ID: 26179121 [TBL] [Abstract][Full Text] [Related]
4. Application of an HS-MS for the detection of ignitable liquids from fire debris. Ferreiro-González M; Ayuso J; Álvarez JA; Palma M; Barroso CG Talanta; 2015 Sep; 142():150-6. PubMed ID: 26003705 [TBL] [Abstract][Full Text] [Related]
5. Chemical fingerprinting of gasoline. 2. Comparison of unevaporated and evaporated automotive gasoline samples. Sandercock PM; Du Pasquier E Forensic Sci Int; 2004 Feb; 140(1):43-59. PubMed ID: 15013165 [TBL] [Abstract][Full Text] [Related]
6. [Research progress on interference in the identification of accelerants in a fire scene]. Yin G; Qian P; Liqiu F; Jin J; Liu L; Zhang J Se Pu; 2022 May; 40(5):401-408. PubMed ID: 35477999 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of an untargeted chemometric approach for the source inference of ignitable liquids in forensic science. de Figueiredo M; Cordella CBY; Jouan-Rimbaud Bouveresse D; Archer X; Bégué JM; Rutledge DN Forensic Sci Int; 2019 Feb; 295():8-18. PubMed ID: 30553191 [TBL] [Abstract][Full Text] [Related]
8. Study of the Weathering Process of Gasoline by eNose. Aliaño-González MJ; Ferreiro-González M; Barbero GF; Ayuso J; Palma M; Barroso CG Sensors (Basel); 2018 Jan; 18(1):. PubMed ID: 29304020 [TBL] [Abstract][Full Text] [Related]
9. Effect of evaporation and matrix interferences on the association of simulated ignitable liquid residues to the corresponding liquid standard. Prather KR; McGuffin VL; Waddell Smith R Forensic Sci Int; 2012 Oct; 222(1-3):242-51. PubMed ID: 22727574 [TBL] [Abstract][Full Text] [Related]
10. Class-conditional feature modeling for ignitable liquid classification with substantial substrate contribution in fire debris analysis. Lopatka M; Sigman ME; Sjerps MJ; Williams MR; Vivó-Truyols G Forensic Sci Int; 2015 Jul; 252():177-86. PubMed ID: 26005858 [TBL] [Abstract][Full Text] [Related]
11. Effects of Fire Suppression Agents and Weathering in the Analysis of Fire Debris by HS-MS eNose. Falatová B; Ferreiro-González M; Martín-Alberca C; Kačíková D; Galla Š; Palma M; G Barroso C Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29899213 [TBL] [Abstract][Full Text] [Related]
12. A method for forensic gasoline comparison in fire debris samples: A numerical likelihood ratio system. Vergeer P; Hendrikse JN; Grutters MMP; Peschier LJC Sci Justice; 2020 Sep; 60(5):438-450. PubMed ID: 32873384 [TBL] [Abstract][Full Text] [Related]
13. Use of a solid absorbent and an accelerant detection canine for the detection of ignitable liquids burned in a structure fire. Nowlan M; Stuart AW; Basara GJ; Sandercock PM J Forensic Sci; 2007 May; 52(3):643-8. PubMed ID: 17397503 [TBL] [Abstract][Full Text] [Related]
14. Analysis of household ignitable liquids and their post-combustion weathered residues using compound-specific gas chromatography-combustion-isotope ratio mass spectrometry. Schwartz Z; An Y; Konstantynova KI; Jackson GP Forensic Sci Int; 2013 Dec; 233(1-3):365-73. PubMed ID: 24314542 [TBL] [Abstract][Full Text] [Related]
15. The evaluation of the extent of transporting or "tracking" an identifiable ignitable liquid (gasoline) throughout fire scenes during the investigative process. Armstrong A; Babrauskas V; Holmes DL; Martin C; Powell R; Riggs S; Young LD J Forensic Sci; 2004 Jul; 49(4):741-8. PubMed ID: 15317188 [TBL] [Abstract][Full Text] [Related]
16. Detection of gasoline on arson suspects' hands. Muller D; Levy A; Shelef R Forensic Sci Int; 2011 Mar; 206(1-3):150-4. PubMed ID: 20729020 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of a headspace solid-phase microextraction method for the analysis of ignitable liquids in fire debris. Fettig I; Krüger S; Deubel JH; Werrel M; Raspe T; Piechotta C J Forensic Sci; 2014 May; 59(3):743-9. PubMed ID: 24329005 [TBL] [Abstract][Full Text] [Related]
18. Recognition of gasoline in fire debris using machine learning: Part I, application of random forest, gradient boosting, support vector machine, and naïve bayes. Bogdal C; Schellenberg R; Höpli O; Bovens M; Lory M Forensic Sci Int; 2022 Feb; 331():111146. PubMed ID: 34968789 [TBL] [Abstract][Full Text] [Related]
19. Analytical tools for the analysis of fire debris. A review: 2008-2015. Martín-Alberca C; Ortega-Ojeda FE; García-Ruiz C Anal Chim Acta; 2016 Jul; 928():1-19. PubMed ID: 27251852 [TBL] [Abstract][Full Text] [Related]
20. Exploratory study on the possibility to link gasoline samples sharing a common source after alteration by evaporation or combustion. de Figueiredo M; Jouan-Rimbaud Bouveresse D; Cordella CBY; Archer X; Bégué JM; Rutledge DN Forensic Sci Int; 2019 Aug; 301():190-201. PubMed ID: 31174133 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]