BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 25499060)

  • 1. Evaluation of co-solvent fraction, pressure and temperature effects in analytical and preparative supercritical fluid chromatography.
    Åsberg D; Enmark M; Samuelsson J; Fornstedt T
    J Chromatogr A; 2014 Dec; 1374():254-260. PubMed ID: 25499060
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemometric evaluation of the combined effect of temperature, pressure, and co-solvent fractions on the chiral separation of basic pharmaceuticals using actual vs set operational conditions.
    Forss E; Haupt D; Stålberg O; Enmark M; Samuelsson J; Fornstedt T
    J Chromatogr A; 2017 May; 1499():165-173. PubMed ID: 28389095
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Peak deformations in preparative supercritical fluid chromatography due to co-solvent adsorption.
    Glenne E; Leek H; Klarqvist M; Samuelsson J; Fornstedt T
    J Chromatogr A; 2016 Oct; 1468():200-208. PubMed ID: 27641721
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Systematic investigations of peak deformations due to co-solvent adsorption in preparative supercritical fluid chromatography.
    Glenne E; Leek H; Klarqvist M; Samuelsson J; Fornstedt T
    J Chromatogr A; 2017 May; 1496():141-149. PubMed ID: 28366564
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Density dependence of retention factors of trans-stilbene oxide for chiral separation by supercritical fluid chromatography.
    Funazukuri T; Ono Y; Sakabe J; Kong CY
    J Chromatogr A; 2017 Dec; 1527():91-96. PubMed ID: 29100613
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Method developments approaches in supercritical fluid chromatography applied to the analysis of cosmetics.
    Lesellier E; Mith D; Dubrulle I
    J Chromatogr A; 2015 Dec; 1423():158-68. PubMed ID: 26553956
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of preparative-supercritical fluid chromatography.
    Rajendran A
    J Chromatogr A; 2012 Aug; 1250():227-49. PubMed ID: 22704881
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulated moving bed chromatography with supercritical fluids for the resolution of bi-naphthol enantiomers and phytol isomers.
    Johannsen M; Peper S; Depta A
    J Biochem Biophys Methods; 2002 Dec; 54(1-3):85-102. PubMed ID: 12543493
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of scale-up from analytical to preparative supercritical fluid chromatography.
    Enmark M; Åsberg D; Leek H; Öhlén K; Klarqvist M; Samuelsson J; Fornstedt T
    J Chromatogr A; 2015 Dec; 1425():280-6. PubMed ID: 26615709
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Purification of drug degradation products supported by analytical and preparative supercritical fluid chromatography.
    Noireau A; Lemasson E; Mauge F; Petit AM; Bertin S; Hennig P; Lesellier É; West C
    J Pharm Biomed Anal; 2019 Jun; 170():40-47. PubMed ID: 30904738
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unravelling the effects of mobile phase additives in supercritical fluid chromatography-Part II: Adsorption on the stationary phase.
    West C; Lemasson E
    J Chromatogr A; 2019 May; 1593():135-146. PubMed ID: 30803789
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Effect of sample solvents on retention in packed column supercritical fluid chromatography].
    Lu F; Liu LL; Wu YT
    Se Pu; 2000 Mar; 18(2):155-7. PubMed ID: 12541595
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of reference conditions on flow rate, modifier fraction and retention in supercritical fluid chromatography.
    De Pauw R; Shoykhet Choikhet K; Desmet G; Broeckhoven K
    J Chromatogr A; 2016 Aug; 1459():129-135. PubMed ID: 27401813
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A chemometric approach to elucidate the parameter impact in the hyphenation of evaporative light scattering detector to supercritical fluid chromatography.
    Lecoeur M; Simon N; Sautou V; Decaudin B; Vaccher C;
    J Chromatogr A; 2014 Mar; 1333():124-33. PubMed ID: 24529952
    [TBL] [Abstract][Full Text] [Related]  

  • 15. History of supercritical fluid chromatography: instrumental development.
    Saito M
    J Biosci Bioeng; 2013 Jun; 115(6):590-9. PubMed ID: 23318247
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring the enantioseparation of amino-naphthol analogues by supercritical fluid chromatography.
    Aranyi A; Ilisz I; Péter A; Fülöp F; West C
    J Chromatogr A; 2015 Mar; 1387():123-33. PubMed ID: 25687458
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparative supercritical fluid chromatography: A powerful tool for chiral separations.
    Speybrouck D; Lipka E
    J Chromatogr A; 2016 Oct; 1467():33-55. PubMed ID: 27524302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modelling of retention in analytical supercritical fluid chromatography for CO2-Methanol mobile phase.
    Leśko M; Poe DP; Kaczmarski K
    J Chromatogr A; 2013 Aug; 1305():285-92. PubMed ID: 23891374
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insights into chiral recognition mechanisms in supercritical fluid chromatography V. Effect of the nature and proportion of alcohol mobile phase modifier with amylose and cellulose tris-(3,5-dimethylphenylcarbamate) stationary phases.
    Khater S; West C
    J Chromatogr A; 2014 Dec; 1373():197-210. PubMed ID: 25482039
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using subcritical/supercritical fluid chromatography to separate acidic, basic, and neutral compounds over an ionic liquid-functionalized stationary phase.
    Chou FM; Wang WT; Wei GT
    J Chromatogr A; 2009 Apr; 1216(16):3594-9. PubMed ID: 19269644
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.