These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 25499147)
1. An optimal glucose feeding strategy integrated with step-wise regulation of the dissolved oxygen level improves N-acetylglucosamine production in recombinant Bacillus subtilis. Zhu Y; Liu Y; Li J; Shin HD; Du G; Liu L; Chen J Bioresour Technol; 2015 Feb; 177():387-92. PubMed ID: 25499147 [TBL] [Abstract][Full Text] [Related]
2. Combinatorial pathway enzyme engineering and host engineering overcomes pyruvate overflow and enhances overproduction of N-acetylglucosamine in Bacillus subtilis. Ma W; Liu Y; Lv X; Li J; Du G; Liu L Microb Cell Fact; 2019 Jan; 18(1):1. PubMed ID: 30609921 [TBL] [Abstract][Full Text] [Related]
3. Rewiring the Glucose Transportation and Central Metabolic Pathways for Overproduction of N-Acetylglucosamine in Bacillus subtilis. Gu Y; Deng J; Liu Y; Li J; Shin HD; Du G; Chen J; Liu L Biotechnol J; 2017 Oct; 12(10):. PubMed ID: 28731580 [TBL] [Abstract][Full Text] [Related]
4. Feeding strategy design for recombinant human growth hormone production by Bacillus subtilis. Şahin B; Öztürk S; Çalık P; Özdamar TH Bioprocess Biosyst Eng; 2015 Oct; 38(10):1855-65. PubMed ID: 26104536 [TBL] [Abstract][Full Text] [Related]
5. Modular pathway engineering of key carbon-precursor supply-pathways for improved N-acetylneuraminic acid production in Bacillus subtilis. Zhang X; Liu Y; Liu L; Wang M; Li J; Du G; Chen J Biotechnol Bioeng; 2018 Sep; 115(9):2217-2231. PubMed ID: 29896807 [TBL] [Abstract][Full Text] [Related]
6. Modular pathway engineering of Bacillus subtilis for improved N-acetylglucosamine production. Liu Y; Zhu Y; Li J; Shin HD; Chen RR; Du G; Liu L; Chen J Metab Eng; 2014 May; 23():42-52. PubMed ID: 24560814 [TBL] [Abstract][Full Text] [Related]
7. Pathway engineering of Bacillus subtilis for microbial production of N-acetylglucosamine. Liu Y; Liu L; Shin HD; Chen RR; Li J; Du G; Chen J Metab Eng; 2013 Sep; 19():107-15. PubMed ID: 23876412 [TBL] [Abstract][Full Text] [Related]
8. Optimization of glucose feeding approaches for enhanced glucosamine and N-acetylglucosamine production by an engineered Escherichia coli. Chen X; Liu L; Li J; Liu J; Du G; Chen J J Ind Microbiol Biotechnol; 2012 Feb; 39(2):359-65. PubMed ID: 22009059 [TBL] [Abstract][Full Text] [Related]
9. CRISPRi allows optimal temporal control of N-acetylglucosamine bioproduction by a dynamic coordination of glucose and xylose metabolism in Bacillus subtilis. Wu Y; Chen T; Liu Y; Lv X; Li J; Du G; Ledesma-Amaro R; Liu L Metab Eng; 2018 Sep; 49():232-241. PubMed ID: 30176395 [TBL] [Abstract][Full Text] [Related]
10. Combinatorial promoter engineering of glucokinase and phosphoglucoisomerase for improved N-acetylglucosamine production in Bacillus subtilis. Ling M; Liu Y; Li J; Shin HD; Chen J; Du G; Liu L Bioresour Technol; 2017 Dec; 245(Pt A):1093-1102. PubMed ID: 28946392 [TBL] [Abstract][Full Text] [Related]
11. Engineering a Glucosamine-6-phosphate Responsive glmS Ribozyme Switch Enables Dynamic Control of Metabolic Flux in Bacillus subtilis for Overproduction of N-Acetylglucosamine. Niu T; Liu Y; Li J; Koffas M; Du G; Alper HS; Liu L ACS Synth Biol; 2018 Oct; 7(10):2423-2435. PubMed ID: 30138558 [TBL] [Abstract][Full Text] [Related]
12. [High-cell density cultivation of recombinant Escherichia coli for production of TRAIL by using a 2-stage feeding strategy]. Zhang Y; Shen YL; Xia XX; Sun AY; Wei DZ; Zhou JS; Zhang GJ; Wang LH; Jiao BH Sheng Wu Gong Cheng Xue Bao; 2004 May; 20(3):408-13. PubMed ID: 15971615 [TBL] [Abstract][Full Text] [Related]
13. The elucidation of phosphosugar stress response in Bacillus subtilis guides strain engineering for high N-acetylglucosamine production. Niu T; Lv X; Liu Y; Li J; Du G; Ledesma-Amaro R; Liu L Biotechnol Bioeng; 2021 Jan; 118(1):383-396. PubMed ID: 32965679 [TBL] [Abstract][Full Text] [Related]
14. Improved glucosamine and N-acetylglucosamine production by an engineered Escherichia coli via step-wise regulation of dissolved oxygen level. Chen X; Liu L; Li J; Du G; Chen J Bioresour Technol; 2012 Apr; 110():534-8. PubMed ID: 22325898 [TBL] [Abstract][Full Text] [Related]
15. Production of nattokinase by batch and fed-batch culture of Bacillus subtilis. Cho YH; Song JY; Kim KM; Kim MK; Lee IY; Kim SB; Kim HS; Han NS; Lee BH; Kim BS N Biotechnol; 2010 Sep; 27(4):341-6. PubMed ID: 20541632 [TBL] [Abstract][Full Text] [Related]
16. Spatial modulation of key pathway enzymes by DNA-guided scaffold system and respiration chain engineering for improved N-acetylglucosamine production by Bacillus subtilis. Liu Y; Zhu Y; Ma W; Shin HD; Li J; Liu L; Du G; Chen J Metab Eng; 2014 Jul; 24():61-9. PubMed ID: 24815549 [TBL] [Abstract][Full Text] [Related]
17. L-lactic acid production by Bacillus subtilis MUR1. Gao T; Wong Y; Ng C; Ho K Bioresour Technol; 2012 Oct; 121():105-10. PubMed ID: 22858473 [TBL] [Abstract][Full Text] [Related]
18. Effects of pH and dissolved oxygen on the synthesis of γ-glutamyltranspeptidase from Bacillus subtilis SK 11.004. Li W; Jiang B; Mu W; Miao M; Zhang T J Sci Food Agric; 2012 Feb; 92(3):475-80. PubMed ID: 21987357 [TBL] [Abstract][Full Text] [Related]
19. Fed-batch production of D-ribose from sugar mixtures by transketolase-deficient Bacillus subtilis SPK1. Park YC; Kim SG; Park K; Lee KH; Seo JH Appl Microbiol Biotechnol; 2004 Dec; 66(3):297-302. PubMed ID: 15375635 [TBL] [Abstract][Full Text] [Related]
20. Production of nattokinase by high cell density fed-batch culture of Bacillus subtilis. Kwon EY; Kim KM; Kim MK; Lee IY; Kim BS Bioprocess Biosyst Eng; 2011 Sep; 34(7):789-93. PubMed ID: 21336955 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]