These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 25499182)
1. Nutrient removal in a closed silvofishery system using three mangrove species (Avicennia germinans, Laguncularia racemosa, and Rhizophora mangle). De-León-Herrera R; Flores-Verdugo F; Flores-de-Santiago F; González-Farías F Mar Pollut Bull; 2015 Feb; 91(1):243-8. PubMed ID: 25499182 [TBL] [Abstract][Full Text] [Related]
2. Leaf morphological strategies of seedlings and saplings of Rhizophora mangle (Rhizophoraceae), Laguncularia racemosa (Combretaceae) and Avicennia schaueriana (Acanthaceae) from Southern Brazil. Pelozo A; Boeger MRT; Sereneski-de-Lima C; Soffiatti P Rev Biol Trop; 2016 Mar; 64(1):305-17. PubMed ID: 28862820 [TBL] [Abstract][Full Text] [Related]
3. Leaf gas exchange characteristics of three neotropical mangrove species in response to varying hydroperiod. Krauss KW; Twilley RR; Doyle TW; Gardiner ES Tree Physiol; 2006 Jul; 26(7):959-68. PubMed ID: 16585041 [TBL] [Abstract][Full Text] [Related]
4. Differential bioaccumulation and translocation patterns in three mangrove plants experimentally exposed to iron. Consequences for environmental sensing. Arrivabene HP; Campos CQ; Souza IDC; Wunderlin DA; Milanez CRD; Machado SR Environ Pollut; 2016 Aug; 215():302-313. PubMed ID: 27213571 [TBL] [Abstract][Full Text] [Related]
5. Propagule size and predispersal damage by insects affect establishment and early growth of mangrove seedlings. Sousa WP; Kennedy PG; Mitchell BJ Oecologia; 2003 May; 135(4):564-75. PubMed ID: 12684857 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of molluscicidal activity of three mangrove species (Avicennia schaueriana, Laguncularia racemosa and Rhizophora mangle) and their effects on the bioactivity of Biomphalaria glabrata Say, 1818. Mendes RJA; Pereira Filho AA; Nogueira AJL; Araújo KRF; França CRC; Carvalho IB; Silva NMLD; Azevedo AS; Rosa IG Rev Inst Med Trop Sao Paulo; 2018; 60():e7. PubMed ID: 29451595 [TBL] [Abstract][Full Text] [Related]
7. Effect of pollution by particulate iron on the morphoanatomy, histochemistry, and bioaccumulation of three mangrove plant species in Brazil. Arrivabene HP; Souza Ida C; Có WL; Conti MM; Wunderlin DA; Milanez CR Chemosphere; 2015 May; 127():27-34. PubMed ID: 25655694 [TBL] [Abstract][Full Text] [Related]
8. Fungal diversity and plant disease in mangrove forests: salt excretion as a possible defense mechanism. Gilbert GS; Mejía-Chang M; Rojas E Oecologia; 2002 Jul; 132(2):278-285. PubMed ID: 28547363 [TBL] [Abstract][Full Text] [Related]
9. Sap flow characteristics of neotropical mangroves in flooded and drained soils. Krauss KW; Young PJ; Chambers JL; Doyle TW; Twilley RR Tree Physiol; 2007 May; 27(5):775-83. PubMed ID: 17267368 [TBL] [Abstract][Full Text] [Related]
10. Pollinator-mediated competition between two co-flowering Neotropical mangrove species, Avicennia germinans (Avicenniaceae) and Laguncularia racemosa (Combretaceae). Landry CL Ann Bot; 2013 Feb; 111(2):207-14. PubMed ID: 23235696 [TBL] [Abstract][Full Text] [Related]
11. Spectral characterization of mangrove leaves in the Brazilian Amazonian Coast: Turiaçu Bay, Maranhão State. Rebelo-Mochel F; Ponzoni FJ An Acad Bras Cienc; 2007 Dec; 79(4):683-92. PubMed ID: 18066436 [TBL] [Abstract][Full Text] [Related]
12. Mangrove microclimates alter seedling dynamics at the range edge. Devaney JL; Lehmann M; Feller IC; Parker JD Ecology; 2017 Oct; 98(10):2513-2520. PubMed ID: 28779524 [TBL] [Abstract][Full Text] [Related]
13. [Structure and dynamics of the mangrove forest in the Rancheria River delta, Colombian Caribbean]. Lema Vélez LF; Polanía J Rev Biol Trop; 2007 Mar; 55(1):11-21. PubMed ID: 18457110 [TBL] [Abstract][Full Text] [Related]
14. [Leaf consumption by herbivores in mangroves of the Dagua river estuary, Pacific coast of Colombia]. Romero IC; Cantera K JR; Peña S EJ Rev Biol Trop; 2006 Dec; 54(4):1205-14. PubMed ID: 18457159 [TBL] [Abstract][Full Text] [Related]
15. Environmental tolerances of rare and common mangroves along light and salinity gradients. Dangremond EM; Feller IC; Sousa WP Oecologia; 2015 Dec; 179(4):1187-98. PubMed ID: 26267403 [TBL] [Abstract][Full Text] [Related]
16. Commercial activities and subsistence utilization of mangrove forests around the Wouri estuary and the Douala-Edea reserve (Cameroon). Atheull AN; Din N; Longonje SN; Koedam N; Dahdouh-Guebas F J Ethnobiol Ethnomed; 2009 Nov; 5():35. PubMed ID: 19919680 [TBL] [Abstract][Full Text] [Related]
17. Fungal succession on the decomposition of three plant species from a Brazilian mangrove. Moitinho MA; Chiaramonte JB; Bononi L; Gumiere T; Melo IS; Taketani RG Sci Rep; 2022 Aug; 12(1):14547. PubMed ID: 36008524 [TBL] [Abstract][Full Text] [Related]
18. Plant growth and the performance of mangrove wetland microcosms for mariculture effluent depuration. Su YM; Lin YF; Jing SR; Hou PC Mar Pollut Bull; 2011 Jul; 62(7):1455-63. PubMed ID: 21561629 [TBL] [Abstract][Full Text] [Related]
19. Photosynthetic performance and resource utilization of two mangrove species coexisting in a hypersaline scrub forest. Lovelock CE; Feller IC Oecologia; 2003 Mar; 134(4):455-62. PubMed ID: 12647116 [TBL] [Abstract][Full Text] [Related]