BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

359 related articles for article (PubMed ID: 25499981)

  • 1. Role of enhanced vector transmission of a new West Nile virus strain in an outbreak of equine disease in Australia in 2011.
    van den Hurk AF; Hall-Mendelin S; Webb CE; Tan CS; Frentiu FD; Prow NA; Hall RA
    Parasit Vectors; 2014 Dec; 7():586. PubMed ID: 25499981
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The insect-specific Palm Creek virus modulates West Nile virus infection in and transmission by Australian mosquitoes.
    Hall-Mendelin S; McLean BJ; Bielefeldt-Ohmann H; Hobson-Peters J; Hall RA; van den Hurk AF
    Parasit Vectors; 2016 Jul; 9(1):414. PubMed ID: 27457250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The human and animal health impacts of introduction and spread of an exotic strain of West Nile virus in Australia.
    Hernández-Jover M; Roche S; Ward MP
    Prev Vet Med; 2013 May; 109(3-4):186-204. PubMed ID: 23098914
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Replication potential and different modes of transmission of West Nile virus in an Indian strain of Culex gelidus Theobald (Diptera: Culicidae) mosquitoes.
    Sudeep AB; Ghodke YS; Gokhale MD; George RP; Dhaigude SD; Bondre VP
    J Vector Borne Dis; 2014 Dec; 51(4):333-8. PubMed ID: 25540967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The recently identified flavivirus Bamaga virus is transmitted horizontally by Culex mosquitoes and interferes with West Nile virus replication in vitro and transmission in vivo.
    Colmant AMG; Hall-Mendelin S; Ritchie SA; Bielefeldt-Ohmann H; Harrison JJ; Newton ND; O'Brien CA; Cazier C; Johansen CA; Hobson-Peters J; Hall RA; van den Hurk AF
    PLoS Negl Trop Dis; 2018 Oct; 12(10):e0006886. PubMed ID: 30356234
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High subclinical West Nile virus incidence among nonvaccinated horses in northern California associated with low vector abundance and infection.
    Nielsen CF; Reisen WK; Armijos MV; Maclachlan NJ; Scott TW
    Am J Trop Med Hyg; 2008 Jan; 78(1):45-52. PubMed ID: 18187784
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distribution and abundance of host-seeking Culex species at three proximate locations with different levels of West Nile virus activity.
    Rochlin I; Ginsberg HS; Campbell SR
    Am J Trop Med Hyg; 2009 Apr; 80(4):661-8. PubMed ID: 19346396
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The contribution of Culex pipiens complex mosquitoes to transmission and persistence of West Nile virus in North America.
    Andreadis TG
    J Am Mosq Control Assoc; 2012 Dec; 28(4 Suppl):137-51. PubMed ID: 23401954
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vector competence of two Indian populations of Culex quinquefasciatus (Diptera: Culicidae) mosquitoes to three West Nile virus strains.
    Sudeep AB; Mandar P; Ghodke YK; George RP; Gokhale MD
    J Vector Borne Dis; 2015 Sep; 52(3):185-92. PubMed ID: 26418647
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Factors That Influence the Transmission of West Nile Virus in Florida.
    Day JF; Tabachnick WJ; Smartt CT
    J Med Entomol; 2015 Sep; 52(5):743-54. PubMed ID: 26336216
    [TBL] [Abstract][Full Text] [Related]  

  • 11. West Nile virus infection rates and avian serology in east-central Illinois.
    Lampman RL; Krasavin NM; Ward MP; Beveroth TA; Lankau EW; Alto BW; Muturi E; Novak RJ
    J Am Mosq Control Assoc; 2013 Jun; 29(2):108-22. PubMed ID: 23923325
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative Vector Competence of North American
    Romo H; Papa A; Kading R; Clark R; Delorey M; Brault AC
    Am J Trop Med Hyg; 2018 Jun; 98(6):1863-1869. PubMed ID: 29637885
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vector competence of Australian mosquito species for a North American strain of West Nile virus.
    Jansen CC; Webb CE; Northill JA; Ritchie SA; Russell RC; Van den Hurk AF
    Vector Borne Zoonotic Dis; 2008 Dec; 8(6):805-11. PubMed ID: 18973445
    [TBL] [Abstract][Full Text] [Related]  

  • 14. West Nile virus infections in Greece: an update.
    Papa A
    Expert Rev Anti Infect Ther; 2012 Jul; 10(7):743-50. PubMed ID: 22943398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Host selection by Culex pipiens mosquitoes and West Nile virus amplification.
    Hamer GL; Kitron UD; Goldberg TL; Brawn JD; Loss SR; Ruiz MO; Hayes DB; Walker ED
    Am J Trop Med Hyg; 2009 Feb; 80(2):268-78. PubMed ID: 19190226
    [TBL] [Abstract][Full Text] [Related]  

  • 16. West Nile virus infection in mosquitoes, birds, horses, and humans, Staten Island, New York, 2000.
    Kulasekera VL; Kramer L; Nasci RS; Mostashari F; Cherry B; Trock SC; Glaser C; Miller JR
    Emerg Infect Dis; 2001; 7(4):722-5. PubMed ID: 11589172
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental transmission of West Nile virus by Culex nigripalpus from Honduras.
    Mores CN; Turell MJ; Dohm DJ; Blow JA; Carranza MT; Quintana M
    Vector Borne Zoonotic Dis; 2007; 7(2):279-84. PubMed ID: 17627449
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vector competence of Culex tarsalis from Orange County, California, for West Nile virus.
    Turell MJ; O'Guinn ML; Dohm DJ; Webb JP; Sardelis MR
    Vector Borne Zoonotic Dis; 2002; 2(3):193-6. PubMed ID: 12737548
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reproductive biology and susceptibility of Florida Culex coronator to infection with West Nile virus.
    Alto BW; Connelly CR; O'Meara GF; Hickman D; Karr N
    Vector Borne Zoonotic Dis; 2014 Aug; 14(8):606-14. PubMed ID: 25072992
    [TBL] [Abstract][Full Text] [Related]  

  • 20. West Nile virus host-vector-pathogen interactions in a colonial raptor.
    Soltész Z; Erdélyi K; Bakonyi T; Barna M; Szentpáli-Gavallér K; Solt S; Horváth É; Palatitz P; Kotymán L; Dán Á; Papp L; Harnos A; Fehérvári P
    Parasit Vectors; 2017 Sep; 10(1):449. PubMed ID: 28962629
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.