BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 25500098)

  • 1. Modulation of particle size and molecular interactions by sonoprecipitation method for enhancing dissolution rate of poorly water-soluble drug.
    Tran TT; Tran KA; Tran PH
    Ultrason Sonochem; 2015 May; 24():256-63. PubMed ID: 25500098
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amorphous isradipine nanosuspension by the sonoprecipitation method.
    Tran TT; Tran PH; Nguyen MN; Tran KT; Pham MN; Tran PC; Vo TV
    Int J Pharm; 2014 Oct; 474(1-2):146-50. PubMed ID: 25138256
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Encapsulation of Solid Dispersion in Solid Lipid Particles for Dissolution Enhancement of Poorly Water-Soluble Drug.
    My Tran KT; Vo TV; Lee BJ; Duan W; Ha-Lien Tran P; Truong-Dinh Tran T
    Curr Drug Deliv; 2018; 15(4):576-584. PubMed ID: 28595530
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanonization of curcumin by antisolvent precipitation: process development, characterization, freeze drying and stability performance.
    Yadav D; Kumar N
    Int J Pharm; 2014 Dec; 477(1-2):564-77. PubMed ID: 25445971
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation of amorphous cefuroxime axetil nanoparticles by sonoprecipitation for enhancement of bioavailability.
    Dhumal RS; Biradar SV; Yamamura S; Paradkar AR; York P
    Eur J Pharm Biopharm; 2008 Sep; 70(1):109-15. PubMed ID: 18502628
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dissolution-modulating mechanism of alkalizers and polymers in a nanoemulsifying solid dispersion containing ionizable and poorly water-soluble drug.
    Tran TT; Tran PH; Lee BJ
    Eur J Pharm Biopharm; 2009 May; 72(1):83-90. PubMed ID: 19141319
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and characterization of loratadine nanosuspension prepared by ultrasonic-assisted precipitation.
    Alshweiat A; Katona G; Csóka I; Ambrus R
    Eur J Pharm Sci; 2018 Sep; 122():94-104. PubMed ID: 29908301
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced dissolution performance of curcumin with the use of supersaturatable formulations.
    Gosangari S; Dyakonov T
    Pharm Dev Technol; 2013; 18(2):475-80. PubMed ID: 22881446
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Curcumin nanoparticles containing poloxamer or soluplus tailored by high pressure homogenization using antisolvent crystallization.
    Homayouni A; Amini M; Sohrabi M; Varshosaz J; Nokhodchi A
    Int J Pharm; 2019 May; 562():124-134. PubMed ID: 30898640
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced dissolution rate and oral bioavailability of simvastatin nanocrystal prepared by sonoprecipitation.
    Jiang T; Han N; Zhao B; Xie Y; Wang S
    Drug Dev Ind Pharm; 2012 Oct; 38(10):1230-9. PubMed ID: 22229827
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Continuous production of aqueous suspensions of ultra-fine particles of curcumin using ultrasonically driven mixing device.
    Pandey K; Chatte A; Dalvi S
    Pharm Dev Technol; 2018 Jul; 23(6):608-619. PubMed ID: 28368746
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Haloperidol-loaded PLGA nanoparticles: systematic study of particle size and drug content.
    Budhian A; Siegel SJ; Winey KI
    Int J Pharm; 2007 May; 336(2):367-75. PubMed ID: 17207944
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparing various techniques to produce micro/nanoparticles for enhancing the dissolution of celecoxib containing PVP.
    Homayouni A; Sadeghi F; Varshosaz J; Garekani HA; Nokhodchi A
    Eur J Pharm Biopharm; 2014 Sep; 88(1):261-74. PubMed ID: 24952357
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of water dispersed nanoparticles from different polysaccharides and their application in drug release.
    Ayadi F; Bayer IS; Marras S; Athanassiou A
    Carbohydr Polym; 2016 Jan; 136():282-91. PubMed ID: 26572357
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of encapsulation of curcumin in polymeric nanoparticles: how efficient to control ESIPT process?
    Banerjee C; Maiti S; Mustafi M; Kuchlyan J; Banik D; Kundu N; Dhara D; Sarkar N
    Langmuir; 2014 Sep; 30(36):10834-44. PubMed ID: 25148375
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation and characterization of hydroxypropyl methyl cellulose films containing stable BCS Class II drug nanoparticles for pharmaceutical applications.
    Sievens-Figueroa L; Bhakay A; Jerez-Rozo JI; Pandya N; Romañach RJ; Michniak-Kohn B; Iqbal Z; Bilgili E; Davé RN
    Int J Pharm; 2012 Feb; 423(2):496-508. PubMed ID: 22178619
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of the release mechanism of a sparingly water-soluble drug from solid dispersions in hydrophilic carriers based on physical state of drug, particle size distribution and drug-polymer interactions.
    Karavas E; Georgarakis E; Sigalas MP; Avgoustakis K; Bikiaris D
    Eur J Pharm Biopharm; 2007 Jun; 66(3):334-47. PubMed ID: 17267194
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combining SEM, TEM, and micro-Raman techniques to differentiate between the amorphous molecular level dispersions and nanodispersions of a poorly water-soluble drug within a polymer matrix.
    Karavas E; Georgarakis M; Docoslis A; Bikiaris D
    Int J Pharm; 2007 Aug; 340(1-2):76-83. PubMed ID: 17478064
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation and study of tramadol imprinted micro-and nanoparticles by precipitation polymerization: microwave irradiation and conventional heating method.
    Seifi M; Hassanpour Moghadam M; Hadizadeh F; Ali-Asgari S; Aboli J; Mohajeri SA
    Int J Pharm; 2014 Aug; 471(1-2):37-44. PubMed ID: 24792981
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation of azithromycin nanosuspensions by reactive precipitation method.
    Hou CD; Wang JX; Le Y; Zou HK; Zhao H
    Drug Dev Ind Pharm; 2012 Jul; 38(7):848-54. PubMed ID: 22092042
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.