These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 25500098)

  • 41. Lipid nanoparticles: drug localization is substance-specific and achievable load depends on the size and physical state of the particles.
    Kupetz E; Bunjes H
    J Control Release; 2014 Sep; 189():54-64. PubMed ID: 24933601
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Quick synthesis of lipid-polymer hybrid nanoparticles with low polydispersity using a single-step sonication method.
    Fang RH; Aryal S; Hu CM; Zhang L
    Langmuir; 2010 Nov; 26(22):16958-62. PubMed ID: 20961057
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Preparation of biodegradable nanoparticles of tri-block PLA-PEG-PLA copolymer and determination of factors controlling the particle size using artificial neural network.
    Asadi H; Rostamizadeh K; Salari D; Hamidi M
    J Microencapsul; 2011; 28(5):406-16. PubMed ID: 21736525
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Insight into curcumin-loaded β-lactoglobulin nanoparticles: incorporation, particle disintegration, and releasing profiles.
    Teng Z; Li Y; Wang Q
    J Agric Food Chem; 2014 Sep; 62(35):8837-47. PubMed ID: 25135071
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Formation of nano/micro-dispersions with improved dissolution properties upon dispersion of ritonavir melt extrudate in aqueous media.
    Tho I; Liepold B; Rosenberg J; Maegerlein M; Brandl M; Fricker G
    Eur J Pharm Sci; 2010 Apr; 40(1):25-32. PubMed ID: 20172027
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Application of a Microreactor to Pharmaceutical Manufacturing: Preparation of Amorphous Curcumin Nanoparticles and Controlling the Crystallinity of Curcumin Nanoparticles by Ultrasonic Treatment.
    Araki K; Yoshizumi M; Kimura S; Tanaka A; Inoue D; Furubayashi T; Sakane T; Enomura M
    AAPS PharmSciTech; 2019 Dec; 21(1):17. PubMed ID: 31811523
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Preparation of stable nitrendipine nanosuspensions using the precipitation-ultrasonication method for enhancement of dissolution and oral bioavailability.
    Xia D; Quan P; Piao H; Piao H; Sun S; Yin Y; Cui F
    Eur J Pharm Sci; 2010 Jul; 40(4):325-34. PubMed ID: 20417274
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Critical Material Attributes of Strip Films Loaded With Poorly Water-Soluble Drug Nanoparticles: II. Impact of Polymer Molecular Weight.
    Krull SM; Ammirata J; Bawa S; Li M; Bilgili E; Davé RN
    J Pharm Sci; 2017 Feb; 106(2):619-628. PubMed ID: 27871727
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Heat induced evaporative antisolvent nanoprecipitation (HIEAN) of itraconazole.
    Mugheirbi NA; Paluch KJ; Tajber L
    Int J Pharm; 2014 Aug; 471(1-2):400-11. PubMed ID: 24879938
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Preparation and characterization of polymeric pH-sensitive STEALTH® nanoparticles for tumor delivery of a lipophilic prodrug of paclitaxel.
    Lundberg BB
    Int J Pharm; 2011 Apr; 408(1-2):208-12. PubMed ID: 21296135
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Enhanced dispersibility and bioactivity of curcumin by encapsulation in casein nanocapsules.
    Pan K; Zhong Q; Baek SJ
    J Agric Food Chem; 2013 Jun; 61(25):6036-43. PubMed ID: 23734864
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ultrasound-assisted modulation of concomitant polymorphism of curcumin during liquid antisolvent precipitation.
    Thorat AA; Dalvi SV
    Ultrason Sonochem; 2016 May; 30():35-43. PubMed ID: 26703200
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Fabrication of curcumin encapsulated PLGA nanoparticles for improved therapeutic effects in metastatic cancer cells.
    Yallapu MM; Gupta BK; Jaggi M; Chauhan SC
    J Colloid Interface Sci; 2010 Nov; 351(1):19-29. PubMed ID: 20627257
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A new method for pH triggered curcumin release by applying poly(L-lysine) mediated nanoparticle-congregation.
    Patra D; Sleem F
    Anal Chim Acta; 2013 Sep; 795():60-8. PubMed ID: 23998538
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Poorly water-soluble drug nanoparticles via solvent evaporation in water-soluble porous polymers.
    Roberts AD; Zhang H
    Int J Pharm; 2013 Apr; 447(1-2):241-50. PubMed ID: 23499755
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Solid dispersions, part II: new strategies in manufacturing methods for dissolution rate enhancement of poorly water-soluble drugs.
    Bikiaris DN
    Expert Opin Drug Deliv; 2011 Dec; 8(12):1663-80. PubMed ID: 21919806
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Enhanced kinetic solubility profiles of indomethacin amorphous solid dispersions in poly(2-hydroxyethyl methacrylate) hydrogels.
    Sun DD; Ju TC; Lee PI
    Eur J Pharm Biopharm; 2012 May; 81(1):149-58. PubMed ID: 22233548
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Triggered-release polymeric conjugate micelles for on-demand intracellular drug delivery.
    Cao Y; Gao M; Chen C; Fan A; Zhang J; Kong D; Wang Z; Peer D; Zhao Y
    Nanotechnology; 2015 Mar; 26(11):115101. PubMed ID: 25708980
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Nanoparticles synthesized from soy protein: preparation, characterization, and application for nutraceutical encapsulation.
    Teng Z; Luo Y; Wang Q
    J Agric Food Chem; 2012 Mar; 60(10):2712-20. PubMed ID: 22352467
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Improving the anticancer activity of curcumin using nanocurcumin dispersion in water.
    Basniwal RK; Khosla R; Jain N
    Nutr Cancer; 2014; 66(6):1015-22. PubMed ID: 25068616
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.