BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 25500383)

  • 1. An individual-based modeling approach to simulate the effects of cellular nutrient competition on Escherichia coli K-12 MG1655 colony behavior and interactions in aerobic structured food systems.
    Tack IL; Logist F; Noriega Fernández E; Van Impe JF
    Food Microbiol; 2015 Feb; 45(Pt B):179-88. PubMed ID: 25500383
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of cell immobilization on the growth dynamics of Salmonella Typhimurium and Escherichia coli at suboptimal temperatures.
    Smet C; Van Derlinden E; Mertens L; Noriega E; Van Impe JF
    Int J Food Microbiol; 2015 Sep; 208():75-83. PubMed ID: 26057111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling spatio-temporal patterns generated by Bacillus subtilis.
    Kawasaki K; Mochizuki A; Matsushita M; Umeda T; Shigesada N
    J Theor Biol; 1997 Sep; 188(2):177-85. PubMed ID: 9379672
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heat stress adaptation of Escherichia coli under dynamic conditions: effect of inoculum size.
    Cornet I; Van Derlinden E; Cappuyns AM; Van Impe JF
    Lett Appl Microbiol; 2010 Oct; 51(4):450-5. PubMed ID: 20840551
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of immobilization and salt concentration on the growth dynamics of Escherichia coli K12 and Salmonella typhimurium.
    Boons K; Van Derlinden E; Mertens L; Peeters V; Van Impe JF
    J Food Sci; 2013 Apr; 78(4):M567-74. PubMed ID: 23464757
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unravelling Escherichia coli dynamics close to the maximum growth temperature through heterogeneous modelling.
    Van Derlinden E; Bernaerts K; Van Impe JF
    Lett Appl Microbiol; 2009 Dec; 49(6):659-65. PubMed ID: 19807867
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A quasi-chemical model for the growth and death of microorganisms in foods by non-thermal and high-pressure processing.
    Doona CJ; Feeherry FE; Ross EW
    Int J Food Microbiol; 2005 Apr; 100(1-3):21-32. PubMed ID: 15854689
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards a novel class of predictive microbial growth models.
    Van Impe JF; Poschet F; Geeraerd AH; Vereecken KM
    Int J Food Microbiol; 2005 Apr; 100(1-3):97-105. PubMed ID: 15854696
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulation of
    Tack ILMM; Nimmegeers P; Akkermans S; Hashem I; Van Impe JFM
    Front Microbiol; 2017; 8():2509. PubMed ID: 29321772
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of anaerobic and stationary phase growth conditions on the heat shock and oxidative stress responses in Escherichia coli K-12.
    Díaz-Acosta A; Sandoval ML; Delgado-Olivares L; Membrillo-Hernández J
    Arch Microbiol; 2006 Jun; 185(6):429-38. PubMed ID: 16775749
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conditional confined oscillatory dynamics of Escherichia coli strain K12-MG1655 in chemostat systems.
    Ofiţeru ID; Ferdeş M; Knapp CW; Graham DW; Lavric V
    Appl Microbiol Biotechnol; 2012 Apr; 94(1):185-92. PubMed ID: 22086070
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Introducing a novel interaction model structure for the combined effect of temperature and pH on the microbial growth rate.
    Akkermans S; Noriega Fernandez E; Logist F; Van Impe JF
    Int J Food Microbiol; 2017 Jan; 240():85-96. PubMed ID: 27393390
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultraviolet inactivation kinetics of Escherichia coli and Yersinia pseudotuberculosis in annular reactors.
    Ye Z; Koutchma T; Parisi B; Larkin J; Forney LJ
    J Food Sci; 2007 Jun; 72(5):E271-8. PubMed ID: 17995726
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent trends in non-invasive in situ techniques to monitor bacterial colonies in solid (model) food.
    Lobete MM; Fernandez EN; Van Impe JF
    Front Microbiol; 2015; 6():148. PubMed ID: 25798133
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the sensitivity of forward scattering patterns from bacterial colonies to media composition.
    Bae E; Aroonnual A; Bhunia AK; Hirleman ED
    J Biophotonics; 2011 Apr; 4(4):236-43. PubMed ID: 20549773
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell division theory and individual-based modeling of microbial lag: part I. The theory of cell division.
    Dens EJ; Bernaerts K; Standaert AR; Van Impe JF
    Int J Food Microbiol; 2005 Jun; 101(3):303-18. PubMed ID: 15925713
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell division theory and individual-based modeling of microbial lag: part II. Modeling lag phenomena induced by temperature shifts.
    Dens EJ; Bernaerts K; Standaert AR; Kreft JU; Van Impe JF
    Int J Food Microbiol; 2005 Jun; 101(3):319-32. PubMed ID: 15913823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Escherichia coli population heterogeneity: subpopulation dynamics at super-optimal temperatures.
    Van Derlinden E; Boons K; Van Impe JF
    Food Microbiol; 2011 Jun; 28(4):667-77. PubMed ID: 21511126
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mathematical modelling methodologies in predictive food microbiology: a SWOT analysis.
    Ferrer J; Prats C; López D; Vives-Rego J
    Int J Food Microbiol; 2009 Aug; 134(1-2):2-8. PubMed ID: 19217180
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling microbial competition in food: application to the behavior of Listeria monocytogenes and lactic acid flora in pork meat products.
    Cornu M; Billoir E; Bergis H; Beaufort A; Zuliani V
    Food Microbiol; 2011 Jun; 28(4):639-47. PubMed ID: 21511123
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.