BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 25500394)

  • 1. Software for predictive microbiology and risk assessment: a description and comparison of tools presented at the ICPMF8 Software Fair.
    Tenenhaus-Aziza F; Ellouze M
    Food Microbiol; 2015 Feb; 45(Pt B):290-9. PubMed ID: 25500394
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 'MicroHibro': A software tool for predictive microbiology and microbial risk assessment in foods.
    González SC; Possas A; Carrasco E; Valero A; Bolívar A; Posada-Izquierdo GD; García-Gimeno RM; Zurera G; Pérez-Rodríguez F
    Int J Food Microbiol; 2019 Feb; 290():226-236. PubMed ID: 30368088
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of predictive modelling techniques in industry: from food design up to risk assessment.
    Membré JM; Lambert RJ
    Int J Food Microbiol; 2008 Nov; 128(1):10-5. PubMed ID: 18701182
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Food engineering and predictive microbiology: on the necessity to combine biological and physical kinetics.
    Mafart P
    Int J Food Microbiol; 2005 Apr; 100(1-3):239-51. PubMed ID: 15854709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Special issue on 10th international conference of predictive modelling in foods: Towards a new paradigm in predictive microbiology.
    Pérez-Rodríguez F; Carrasco E; Pradhan AK; Sant'Ana AS; Valdramidis VP; Valero A
    Int J Food Microbiol; 2019 Feb; 291():65-66. PubMed ID: 30463031
    [No Abstract]   [Full Text] [Related]  

  • 6. Quantitative risk assessment from farm to fork and beyond: a global Bayesian approach concerning food-borne diseases.
    Albert I; Grenier E; Denis JB; Rousseau J
    Risk Anal; 2008 Apr; 28(2):557-71. PubMed ID: 18419669
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting mycotoxins in foods: a review.
    Garcia D; Ramos AJ; Sanchis V; Marín S
    Food Microbiol; 2009 Dec; 26(8):757-69. PubMed ID: 19835759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predictive microbiology models vs. modeling microbial growth within Listeria monocytogenes risk assessment: what parameters matter and why.
    Pouillot R; Lubran MB
    Food Microbiol; 2011 Jun; 28(4):720-6. PubMed ID: 21511132
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Predictive microbiology. Toward an operational tool to help our appraisal].
    Jolivet P
    Ann Pharm Fr; 2000 Dec; 58(6 Suppl):475-81. PubMed ID: 11148386
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lessons from the organization of a proficiency testing program in food microbiology by interlaboratory comparison: analytical methods in use, impact of methods on bacterial counts and measurement uncertainty of bacterial counts.
    Augustin JC; Carlier V
    Food Microbiol; 2006 Feb; 23(1):1-38. PubMed ID: 16942983
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Predictive microbiology and risk assessment].
    Hildebrandt G; Kleer J
    Dtsch Tierarztl Wochenschr; 2004 May; 111(5):195-200. PubMed ID: 15233338
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Application of predictive microbiology in fungi growth and mycotoxin production].
    Wang W; Yu H; Li F
    Wei Sheng Yan Jiu; 2009 Nov; 38(6):753-6. PubMed ID: 20047240
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Information systems in food safety management.
    McMeekin TA; Baranyi J; Bowman J; Dalgaard P; Kirk M; Ross T; Schmid S; Zwietering MH
    Int J Food Microbiol; 2006 Dec; 112(3):181-94. PubMed ID: 16934895
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Letter to the editor of the International Journal of Food Microbiology on software to calculate food safety.
    Peleg M
    Int J Food Microbiol; 2007 Aug; 118(1):97-8. PubMed ID: 17588700
    [No Abstract]   [Full Text] [Related]  

  • 15. Mathematical modelling methodologies in predictive food microbiology: a SWOT analysis.
    Ferrer J; Prats C; López D; Vives-Rego J
    Int J Food Microbiol; 2009 Aug; 134(1-2):2-8. PubMed ID: 19217180
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A risk assessment approach applied to the growth of Erwinia carotovora in vegetable juice for variable temperature conditions.
    Shorten PR; Soboleva TK; Pleasants AB; Membré JM
    Int J Food Microbiol; 2006 May; 109(1-2):60-70. PubMed ID: 16507324
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highlights from the 8th International Conference on Predictive Modelling in Food (ICPMF8).
    Ellouze M; Tenenhaus-Aziza F; Carlin F
    Food Microbiol; 2015 Feb; 45(Pt B):160-1. PubMed ID: 25500380
    [No Abstract]   [Full Text] [Related]  

  • 18. Bioinactivation: Software for modelling dynamic microbial inactivation.
    Garre A; Fernández PS; Lindqvist R; Egea JA
    Food Res Int; 2017 Mar; 93():66-74. PubMed ID: 28290281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combined physico-chemical and water transfer modelling to predict bacterial growth during food processes.
    Lebert I; Dussap CG; Lebert A
    Int J Food Microbiol; 2005 Jul; 102(3):305-22. PubMed ID: 16014298
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modelling microbial growth in structured foods: towards a unified approach.
    Wilson PD; Brocklehurst TF; Arino S; Thuault D; Jakobsen M; Lange M; Farkas J; Wimpenny JW; Van Impe JF
    Int J Food Microbiol; 2002 Mar; 73(2-3):275-89. PubMed ID: 11934035
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.