These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 25500614)

  • 1. A motion artifact generation and assessment system for the rapid testing of surface biopotential electrodes.
    Cömert A; Hyttinen J
    Physiol Meas; 2015 Jan; 36(1):1-25. PubMed ID: 25500614
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impedance spectroscopy of changes in skin-electrode impedance induced by motion.
    Cömert A; Hyttinen J
    Biomed Eng Online; 2014 Nov; 13():149. PubMed ID: 25404355
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigating the possible effect of electrode support structure on motion artifact in wearable bioelectric signal monitoring.
    Cömert A; Hyttinen J
    Biomed Eng Online; 2015 May; 14():44. PubMed ID: 25976349
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of pressure and padding on motion artifact of textile electrodes.
    Cömert A; Honkala M; Hyttinen J
    Biomed Eng Online; 2013 Apr; 12():26. PubMed ID: 23565970
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A 160 μA biopotential acquisition IC with fully integrated IA and motion artifact suppression.
    Van Helleputte N; Kim S; Kim H; Kim JP; Van Hoof C; Yazicioglu RF
    IEEE Trans Biomed Circuits Syst; 2012 Dec; 6(6):552-61. PubMed ID: 23853256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrocardiographic motion artifact versus electrode impedance.
    Wiese SR; Anheier P; Connemara RD; Mollner AT; Neils TF; Kahn JA; Webster JG
    IEEE Trans Biomed Eng; 2005 Jan; 52(1):136-9. PubMed ID: 15651575
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fully organic compliant dry electrodes self-adhesive to skin for long-term motion-robust epidermal biopotential monitoring.
    Zhang L; Kumar KS; He H; Cai CJ; He X; Gao H; Yue S; Li C; Seet RC; Ren H; Ouyang J
    Nat Commun; 2020 Sep; 11(1):4683. PubMed ID: 32943621
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabric-Based Wearable Dry Electrodes for Body Surface Biopotential Recording.
    Yokus MA; Jur JS
    IEEE Trans Biomed Eng; 2016 Feb; 63(2):423-30. PubMed ID: 26241969
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stretchable Sponge Electrodes for Long-Term and Motion-Artifact-Tolerant Recording of High-Quality Electrophysiologic Signals.
    Lo LW; Zhao J; Aono K; Li W; Wen Z; Pizzella S; Wang Y; Chakrabartty S; Wang C
    ACS Nano; 2022 Aug; 16(8):11792-11801. PubMed ID: 35861486
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurement of noise and impedance of dry and wet textile electrodes, and textile electrodes with hydrogel.
    Puurtinen MM; Komulainen SM; Kauppinen PK; Malmivuo JA; Hyttinen JA
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():6012-5. PubMed ID: 17946734
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ag-AgCl electrode noise in high-resolution ECG measurements.
    Fernández M; Pallás-Areny R
    Biomed Instrum Technol; 2000; 34(2):125-30. PubMed ID: 10820641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ECG signal quality in intermittent long-term dry electrode recordings with controlled motion artifacts.
    Joutsen A; Cömert A; Kaappa E; Vanhatalo K; Riistama J; Vehkaoja A; Eskola H
    Sci Rep; 2024 Apr; 14(1):8882. PubMed ID: 38632263
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of adaptive motion-artifact reduction on QRS detection.
    Hamilton PS; Curley M; Aimi R
    Biomed Instrum Technol; 2000; 34(3):197-202. PubMed ID: 10868261
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An active electrode for biopotential recording from small localized bio-sources.
    Valchinov ES; Pallikarakis NE
    Biomed Eng Online; 2004 Jul; 3(1):25. PubMed ID: 15271219
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A micropower dry-electrode ECG preamplifier.
    Burke MJ; Gleeson DT
    IEEE Trans Biomed Eng; 2000 Feb; 47(2):155-62. PubMed ID: 10721622
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a differential suction electrode for improved intravaginal recordings of pelvic floor muscle activity: reliability and motion artifact assessment.
    Keshwani N; McLean L
    Neurourol Urodyn; 2012 Nov; 31(8):1272-8. PubMed ID: 22674421
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A practical approach to electrode-skin impedance unbalance measurement.
    Spinelli EM; Mayosky MA; Pallás-Areny R
    IEEE Trans Biomed Eng; 2006 Jul; 53(7):1451-3. PubMed ID: 16830954
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanofiber web textile dry electrodes for long-term biopotential recording.
    Oh TI; Yoon S; Kim TE; Wi H; Kim KJ; Woo EJ; Sadleir RJ
    IEEE Trans Biomed Circuits Syst; 2013 Apr; 7(2):204-11. PubMed ID: 23853303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of dry textile electrodes for long-term electrocardiographic monitoring.
    Alizadeh-Meghrazi M; Ying B; Schlums A; Lam E; Eskandarian L; Abbas F; Sidhu G; Mahnam A; Moineau B; Popovic MR
    Biomed Eng Online; 2021 Jul; 20(1):68. PubMed ID: 34247646
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of power-line interference for adaptive motion artifact removal in biopotential measurements.
    Xu L; Rooijakkers MJ; Rabotti C; Peuscher J; Mischi M
    Physiol Meas; 2016 Jan; 37(1):25-40. PubMed ID: 26641265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.