These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 2550091)
1. Evidence that the two free sulfhydryl groups of plasma fibronectin are in different local environments. Saturation-recovery electron spin resonance study. Lai CS; Narasimhan C; Yin JJ Biophys J; 1989 Aug; 56(2):395-400. PubMed ID: 2550091 [TBL] [Abstract][Full Text] [Related]
2. Differential behavior of the two free sulfhydryl groups of human plasma fibronectin: effects of environmental factors. Narasimhan C; Lai CS Biopolymers; 1991 Sep; 31(10):1159-70. PubMed ID: 1665089 [TBL] [Abstract][Full Text] [Related]
3. Conformational changes of plasma fibronectin detected upon adsorption to solid substrates: a spin-label study. Narasimhan C; Lai CS Biochemistry; 1989 Jun; 28(12):5041-6. PubMed ID: 2548598 [TBL] [Abstract][Full Text] [Related]
4. Electron spin resonance spin label studies of plasma fibronectin: effect of temperature. Lai CS; Tooney NM Arch Biochem Biophys; 1984 Feb; 228(2):465-73. PubMed ID: 6320741 [TBL] [Abstract][Full Text] [Related]
5. Saturation transfer electron spin resonance of Ca2(+)-ATPase covalently spin-labeled with beta-substituted vinyl ketone- and maleimide-nitroxide derivatives. Effects of segmental motion and labeling levels. Horváth LI; Dux L; Hankovszky HO; Hideg K; Marsh D Biophys J; 1990 Jul; 58(1):231-41. PubMed ID: 2166598 [TBL] [Abstract][Full Text] [Related]
6. Spin label studies of sulfhydryl environment in plasma fibronectin. Lai CS; Tooney NM; Ankel EG FEBS Lett; 1984 Aug; 173(2):283-6. PubMed ID: 6086404 [TBL] [Abstract][Full Text] [Related]
7. Heparin modulates conformational states of plasma fibronectin: an electron spin resonance spin label approach. Ankel EG; Homandberg G; Tooney NM; Lai CS Arch Biochem Biophys; 1986 Jan; 244(1):50-6. PubMed ID: 3004341 [TBL] [Abstract][Full Text] [Related]
8. Global topology & stability and local structure & dynamics in a synthetic spin-labeled four-helix bundle protein. Gibney BR; Johansson JS; Rabanal F; Skalicky JJ; Wand AJ; Dutton PL Biochemistry; 1997 Mar; 36(10):2798-806. PubMed ID: 9062107 [TBL] [Abstract][Full Text] [Related]
9. Structure and flexibility of plasma fibronectin in solution: electron spin resonance spin-label, circular dichroism, and sedimentation studies. Lai CS; Tooney NM; Ankel EG Biochemistry; 1984 Dec; 23(26):6393-7. PubMed ID: 6099139 [TBL] [Abstract][Full Text] [Related]
10. Measurement of rotational molecular motion by time-resolved saturation transfer electron paramagnetic resonance. Fajer P; Thomas DD; Feix JB; Hyde JS Biophys J; 1986 Dec; 50(6):1195-202. PubMed ID: 3026503 [TBL] [Abstract][Full Text] [Related]
11. Comparing continuous wave progressive saturation EPR and time domain saturation recovery EPR over the entire motional range of nitroxide spin labels. Nielsen RD; Canaan S; Gladden JA; Gelb MH; Mailer C; Robinson BH J Magn Reson; 2004 Jul; 169(1):129-63. PubMed ID: 15183364 [TBL] [Abstract][Full Text] [Related]
12. Solution of the nitroxide spin-label spectral overlap problem using pulse electron spin resonance. Yin JJ; Feix JB; Hyde JS Biophys J; 1988 Apr; 53(4):525-31. PubMed ID: 2838099 [TBL] [Abstract][Full Text] [Related]
13. Exchange rates at the lipid-protein interface of the myelin proteolipid protein determined by saturation transfer electron spin resonance and continuous wave saturation studies. Horváth LI; Brophy PJ; Marsh D Biophys J; 1993 Mar; 64(3):622-31. PubMed ID: 7682453 [TBL] [Abstract][Full Text] [Related]
14. Saturation-recovery electron paramagnetic resonance discrimination by oxygen transport (DOT) method for characterizing membrane domains. Subczynski WK; Widomska J; Wisniewska A; Kusumi A Methods Mol Biol; 2007; 398():143-57. PubMed ID: 18214379 [TBL] [Abstract][Full Text] [Related]
15. Chain configuration and flexibility gradient in phospholipid membranes. Comparison between spin-label electron spin resonance and deuteron nuclear magnetic resonance, and identification of new conformations. Moser M; Marsh D; Meier P; Wassmer KH; Kothe G Biophys J; 1989 Jan; 55(1):111-23. PubMed ID: 2539207 [TBL] [Abstract][Full Text] [Related]
16. Conformational change in thrombospondin induced by removal of bound Ca2+. A spin label approach. Slane JM; Mosher DF; Lai CS FEBS Lett; 1988 Mar; 229(2):363-6. PubMed ID: 2831100 [TBL] [Abstract][Full Text] [Related]
18. Electron-electron spin-spin interaction in spin-labeled low-spin methemoglobin. Budker V; Du JL; Seiter M; Eaton GR; Eaton SS Biophys J; 1995 Jun; 68(6):2531-42. PubMed ID: 7647256 [TBL] [Abstract][Full Text] [Related]
19. Analysis of saturation transfer electron paramagnetic resonance spectra of a spin-labeled integral membrane protein, band 3, in terms of the uniaxial rotational diffusion model. Hustedt EJ; Beth AH Biophys J; 1995 Oct; 69(4):1409-23. PubMed ID: 8534811 [TBL] [Abstract][Full Text] [Related]
20. Interaction of spin-labeled tryptamine with monoamine oxidase: probing the microenvironment of the active site by spin probe-spin label techniques. Zeidan HM Biochim Biophys Acta; 1988 Jun; 955(1):111-8. PubMed ID: 2838087 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]