These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 25501046)

  • 1. Sampling of finite elements for sparse recovery in large scale 3D electrical impedance tomography.
    Javaherian A; Soleimani M; Moeller K
    Physiol Meas; 2015 Jan; 36(1):43-66. PubMed ID: 25501046
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reducing computational costs in large scale 3D EIT by using a sparse Jacobian matrix with block-wise CGLS reconstruction.
    Yang CL; Wei HY; Adler A; Soleimani M
    Physiol Meas; 2013 Jun; 34(6):645-58. PubMed ID: 23719094
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental justification for using 3D conductivity reconstructions in electrical impedance tomography.
    Halter RJ; Hartov A; Paulsen KD
    Physiol Meas; 2007 Jul; 28(7):S115-27. PubMed ID: 17664629
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A fast time-difference inverse solver for 3D EIT with application to lung imaging.
    Javaherian A; Soleimani M; Moeller K
    Med Biol Eng Comput; 2016 Aug; 54(8):1243-55. PubMed ID: 26733089
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrical impedance tomography in 3D using two electrode planes: characterization and evaluation.
    Wagenaar J; Adler A
    Physiol Meas; 2016 Jun; 37(6):922-37. PubMed ID: 27203154
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving the forward solver for the complete electrode model in EIT using algebraic multigrid.
    Soleimani M; Powell CE; Polydorides N
    IEEE Trans Med Imaging; 2005 May; 24(5):577-83. PubMed ID: 15889545
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial resolution improvement of 3D EIT images by the shrinking sLORETA-FOCUSS algorithm.
    Dong G; Liu H; Bayford RH; Yerworth R; Schimpf PH; Yan W
    Physiol Meas; 2005 Apr; 26(2):S199-208. PubMed ID: 15798233
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Excitation patterns in three-dimensional electrical impedance tomography.
    Dehghani H; Soni N; Halter R; Hartov A; Paulsen KD
    Physiol Meas; 2005 Apr; 26(2):S185-97. PubMed ID: 15798231
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An efficient forward solver in electrical impedance tomography by spectral element method.
    Lim KH; Lee JH; Ye G; Liu QH
    IEEE Trans Med Imaging; 2006 Aug; 25(8):1044-51. PubMed ID: 16894997
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional electrical impedance tomography: a topology optimization approach.
    Mello LA; de Lima CR; Amato MB; Lima RG; Silva EC
    IEEE Trans Biomed Eng; 2008 Feb; 55(2 Pt 1):531-40. PubMed ID: 18269988
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The boundary element method in the forward and inverse problem of electrical impedance tomography.
    de Munck JC; Faes TJ; Heethaar RM
    IEEE Trans Biomed Eng; 2000 Jun; 47(6):792-800. PubMed ID: 10833854
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Compressed sampling for boundary measurements in three-dimensional electrical impedance tomography.
    Javaherian A; Soleimani M
    Physiol Meas; 2013 Sep; 34(9):1133-50. PubMed ID: 24137706
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Induced current magnetic resonance-electrical impedance tomography.
    Ozparlak L; Ider YZ
    Physiol Meas; 2005 Apr; 26(2):S289-305. PubMed ID: 15798242
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solution of the inverse problem of magnetic induction tomography (MIT).
    Merwa R; Hollaus K; Brunner P; Scharfetter H
    Physiol Meas; 2005 Apr; 26(2):S241-50. PubMed ID: 15798237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reconstruction convergence and speed enhancement in electrical impedance tomography for domains with known internal boundaries.
    Rezajoo S; Hossein-Zadeh GA
    Physiol Meas; 2010 Nov; 31(11):1499-516. PubMed ID: 20938064
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Addressing the computational cost of large EIT solutions.
    Boyle A; Borsic A; Adler A
    Physiol Meas; 2012 May; 33(5):787-800. PubMed ID: 22531098
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of a microscopic electrical impedance tomography system for 3D continuous non-destructive monitoring of tissue culture.
    Lee EJ; Wi H; McEwan AL; Farooq A; Sohal H; Woo EJ; Seo JK; Oh TI
    Biomed Eng Online; 2014 Oct; 13():142. PubMed ID: 25286865
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finite element implementation of Maxwell's equations for image reconstruction in electrical impedance tomography.
    Soni NK; Paulsen KD; Dehghani H; Hartov A
    IEEE Trans Med Imaging; 2006 Jan; 25(1):55-61. PubMed ID: 16398414
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic electrical impedance imaging with the interacting multiple model scheme.
    Kim KY; Kim BS; Kim MC; Kim S; Isaacson D; Newell JC
    Physiol Meas; 2005 Apr; 26(2):S217-33. PubMed ID: 15798235
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shape deformation in two-dimensional electrical impedance tomography.
    Boyle A; Adler A; Lionheart WR
    IEEE Trans Med Imaging; 2012 Dec; 31(12):2185-93. PubMed ID: 22711769
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.