These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 25501473)
1. Geochemical niches of iron-oxidizing acidophiles in acidic coal mine drainage. Jones DS; Kohl C; Grettenberger C; Larson LN; Burgos WD; Macaladya JL Appl Environ Microbiol; 2015 Feb; 81(4):1242-50. PubMed ID: 25501473 [TBL] [Abstract][Full Text] [Related]
2. Novel Microbial Assemblages Dominate Weathered Sulfide-Bearing Rock from Copper-Nickel Deposits in the Duluth Complex, Minnesota, USA. Jones DS; Lapakko KA; Wenz ZJ; Olson MC; Roepke EW; Sadowsky MJ; Novak PJ; Bailey JV Appl Environ Microbiol; 2017 Aug; 83(16):. PubMed ID: 28600313 [TBL] [Abstract][Full Text] [Related]
3. Analysis of the microbial community in moderately acidic drainage from the Yanahara pyrite mine in Japan. Wang Y; Yasuda T; Sharmin S; Kanao T; Kamimura K Biosci Biotechnol Biochem; 2014; 78(7):1274-82. PubMed ID: 25229870 [TBL] [Abstract][Full Text] [Related]
4. Comparative Analyses of the Microbial Communities Inhabiting Coal Mining Waste Dump and an Adjacent Acid Mine Drainage Creek. Sun W; Xiao E; Krumins V; Dong Y; Li B; Deng J; Wang Q; Xiao T; Liu J Microb Ecol; 2019 Oct; 78(3):651-664. PubMed ID: 30854582 [TBL] [Abstract][Full Text] [Related]
5. Efficient Low-pH Iron Removal by a Microbial Iron Oxide Mound Ecosystem at Scalp Level Run. Grettenberger CL; Pearce AR; Bibby KJ; Jones DS; Burgos WD; Macalady JL Appl Environ Microbiol; 2017 Apr; 83(7):. PubMed ID: 28087535 [TBL] [Abstract][Full Text] [Related]
7. Metal-oxide precipitation influences microbiome structure in hyporheic zones receiving acid rock drainage. Hoagland B; Rasmussen KL; Singha K; Spear JR; Navarre-Sitchler A Appl Environ Microbiol; 2024 Mar; 90(3):e0198723. PubMed ID: 38391193 [TBL] [Abstract][Full Text] [Related]
8. Geochemical and Temporal Influences on the Enrichment of Acidophilic Iron-Oxidizing Bacterial Communities. Sheng Y; Bibby K; Grettenberger C; Kaley B; Macalady JL; Wang G; Burgos WD Appl Environ Microbiol; 2016 Jun; 82(12):3611-3621. PubMed ID: 27084004 [TBL] [Abstract][Full Text] [Related]
9. Biodiversity and geochemistry of an extremely acidic, low-temperature subterranean environment sustained by chemolithotrophy. Kimura S; Bryan CG; Hallberg KB; Johnson DB Environ Microbiol; 2011 Aug; 13(8):2092-104. PubMed ID: 21382147 [TBL] [Abstract][Full Text] [Related]
10. Ecophysiology of Fe-cycling bacteria in acidic sediments. Lu S; Gischkat S; Reiche M; Akob DM; Hallberg KB; Küsel K Appl Environ Microbiol; 2010 Dec; 76(24):8174-83. PubMed ID: 20971876 [TBL] [Abstract][Full Text] [Related]
11. Legacy copper/nickel mine tailings potentially harbor novel iron/sulfur cycling microorganisms within highly variable communities. Chen M; Grégoire DS; Bain JG; Blowes DW; Hug LA Appl Environ Microbiol; 2024 Jun; 90(6):e0014324. PubMed ID: 38814057 [TBL] [Abstract][Full Text] [Related]
12. New cultivation medium for "Ferrovum" and Gallionella-related strains. Tischler JS; Jwair RJ; Gelhaar N; Drechsel A; Skirl AM; Wiacek C; Janneck E; Schlömann M J Microbiol Methods; 2013 Nov; 95(2):138-44. PubMed ID: 23954479 [TBL] [Abstract][Full Text] [Related]
13. Revealing the microbial community structure of clogging materials in dewatering wells differing in physico-chemical parameters in an open-cast mining area. Wang J; Sickinger M; Ciobota V; Herrmann M; Rasch H; Rösch P; Popp J; Küsel K Water Res; 2014 Oct; 63():222-33. PubMed ID: 25010562 [TBL] [Abstract][Full Text] [Related]
14. Surprising abundance of Gallionella-related iron oxidizers in creek sediments at pH 4.4 or at high heavy metal concentrations. Fabisch M; Beulig F; Akob DM; Küsel K Front Microbiol; 2013; 4():390. PubMed ID: 24385973 [TBL] [Abstract][Full Text] [Related]
15. Dominance of 'Gallionella capsiferriformans' and heavy metal association with Gallionella-like stalks in metal-rich pH 6 mine water discharge. Fabisch M; Freyer G; Johnson CA; Büchel G; Akob DM; Neu TR; Küsel K Geobiology; 2016 Jan; 14(1):68-90. PubMed ID: 26407813 [TBL] [Abstract][Full Text] [Related]
16. Application of a depositional facies model to an acid mine drainage site. Brown JF; Jones DS; Mills DB; Macalady JL; Burgos WD Appl Environ Microbiol; 2011 Jan; 77(2):545-54. PubMed ID: 21097582 [TBL] [Abstract][Full Text] [Related]
17. Microorganisms in subterranean acidic waters within Europe's deepest metal mine. Kay CM; Haanela A; Johnson DB Res Microbiol; 2014 Nov; 165(9):705-12. PubMed ID: 25063488 [TBL] [Abstract][Full Text] [Related]
18. A Novel Uncultured Bacterium of the Family Gallionellaceae: Description and Genome Reconstruction Based on the Metagenomic Analysis of Microbial Community in Acid Mine Drainage. Kadnikov VV; Ivasenko DA; Beletsky AV; Mardanov AV; Danilova EV; Pimenov NV; Karnachuk OV; Ravin NV Mikrobiologiia; 2016 Jul; 85(4):421-435. PubMed ID: 28853774 [TBL] [Abstract][Full Text] [Related]
19. Iron Kinetics and Evolution of Microbial Populations in Low-pH, Ferrous Iron-Oxidizing Bioreactors. Jones RM; Johnson DB Environ Sci Technol; 2016 Aug; 50(15):8239-45. PubMed ID: 27377871 [TBL] [Abstract][Full Text] [Related]
20. Performance of a Geosynthetic-Clay-Liner Cover System at a Cu/Zn Mine Tailings Impoundment. Pakostova E; Schmall AJ; Holland SP; White H; Ptacek CJ; Blowes DW Appl Environ Microbiol; 2020 Apr; 86(8):. PubMed ID: 32033946 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]