These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Pre-Steady-State Kinetic Analysis of Single-Nucleotide Incorporation by DNA Polymerases. Su Y; Peter Guengerich F Curr Protoc Nucleic Acid Chem; 2016 Jun; 65():7.23.1-7.23.10. PubMed ID: 27248785 [TBL] [Abstract][Full Text] [Related]
4. Fluorescent analysis of translesion DNA synthesis by using a novel, non-natural nucleotide analogue. Lee I; Berdis A Chembiochem; 2006 Dec; 7(12):1990-7. PubMed ID: 17091513 [TBL] [Abstract][Full Text] [Related]
5. Full Pre-Steady-State Kinetic Analysis of Single Nucleotide Incorporation by DNA Polymerases. Renders M; Frère JM; Toye D; Herdewijn P Curr Protoc Nucleic Acid Chem; 2019 Sep; 78(1):e98. PubMed ID: 31529783 [TBL] [Abstract][Full Text] [Related]
6. The spacious active site of a Y-family DNA polymerase facilitates promiscuous nucleotide incorporation opposite a bulky carcinogen-DNA adduct: elucidating the structure-function relationship through experimental and computational approaches. Perlow-Poehnelt RA; Likhterov I; Scicchitano DA; Geacintov NE; Broyde S J Biol Chem; 2004 Aug; 279(35):36951-61. PubMed ID: 15210693 [TBL] [Abstract][Full Text] [Related]
7. Effects of base sequence context on translesion synthesis past a bulky (+)-trans-anti-B[a]P-N2-dG lesion catalyzed by the Y-family polymerase pol kappa. Huang X; Kolbanovskiy A; Wu X; Zhang Y; Wang Z; Zhuang P; Amin S; Geacintov NE Biochemistry; 2003 Mar; 42(8):2456-66. PubMed ID: 12600213 [TBL] [Abstract][Full Text] [Related]
8. Optimization of non-natural nucleotides for selective incorporation opposite damaged DNA. Vineyard D; Zhang X; Donnelly A; Lee I; Berdis AJ Org Biomol Chem; 2007 Nov; 5(22):3623-30. PubMed ID: 17971991 [TBL] [Abstract][Full Text] [Related]
9. Efficiency of extension of mismatched primer termini across from cisplatin and oxaliplatin adducts by human DNA polymerases beta and eta in vitro. Bassett E; Vaisman A; Havener JM; Masutani C; Hanaoka F; Chaney SG Biochemistry; 2003 Dec; 42(48):14197-206. PubMed ID: 14640687 [TBL] [Abstract][Full Text] [Related]
10. Translesion synthesis across bulky N2-alkyl guanine DNA adducts by human DNA polymerase kappa. Choi JY; Angel KC; Guengerich FP J Biol Chem; 2006 Jul; 281(30):21062-21072. PubMed ID: 16751196 [TBL] [Abstract][Full Text] [Related]
11. Progress towards single-molecule sequencing: enzymatic synthesis of nucleotide-specifically labeled DNA. Augustin MA; Ankenbauer W; Angerer B J Biotechnol; 2001 Apr; 86(3):289-301. PubMed ID: 11257538 [TBL] [Abstract][Full Text] [Related]
12. Hydrophobicity, shape, and pi-electron contributions during translesion DNA synthesis. Zhang X; Lee I; Zhou X; Berdis AJ J Am Chem Soc; 2006 Jan; 128(1):143-9. PubMed ID: 16390141 [TBL] [Abstract][Full Text] [Related]
13. Polymerization past the N2-isopropylguanine and the N6-isopropyladenine DNA lesions with the translesion synthesis DNA polymerases eta and iota and the replicative DNA polymerase alpha. Perrino FW; Harvey S; Blans P; Gelhaus S; Lacourse WR; Fishbein JC Chem Res Toxicol; 2005 Sep; 18(9):1451-61. PubMed ID: 16167838 [TBL] [Abstract][Full Text] [Related]
14. Pyrene nucleotide as a mechanistic probe: evidence for a transient abasic site-like intermediate in the bypass of dipyrimidine photoproducts by T7 DNA polymerase. Sun L; Wang M; Kool ET; Taylor JS Biochemistry; 2000 Nov; 39(47):14603-10. PubMed ID: 11087416 [TBL] [Abstract][Full Text] [Related]
15. DNA Polymerase Activity Assay Using Near-infrared Fluorescent Labeled DNA Visualized by Acrylamide Gel Electrophoresis. Lewis EL; Leconte AM J Vis Exp; 2017 Oct; (128):. PubMed ID: 29053685 [TBL] [Abstract][Full Text] [Related]
16. Terminal phosphate labeled nucleotides: synthesis, applications, and linker effect on incorporation by DNA polymerases. Kumar S; Sood A; Wegener J; Finn PJ; Nampalli S; Nelson JR; Sekher A; Mitsis P; Macklin J; Fuller CW Nucleosides Nucleotides Nucleic Acids; 2005; 24(5-7):401-8. PubMed ID: 16247959 [TBL] [Abstract][Full Text] [Related]
17. A Comparative Analysis of Translesion DNA Synthesis Catalyzed by a High-Fidelity DNA Polymerase. Dasari A; Deodhar T; Berdis AJ J Mol Biol; 2017 Jul; 429(15):2308-2323. PubMed ID: 28601494 [TBL] [Abstract][Full Text] [Related]
18. Structural Insights into the Processing of Nucleobase-Modified Nucleotides by DNA Polymerases. Hottin A; Marx A Acc Chem Res; 2016 Mar; 49(3):418-27. PubMed ID: 26947566 [TBL] [Abstract][Full Text] [Related]
19. Pre-steady-state Kinetic Analysis of a Family D DNA Polymerase from Thermococcus sp. 9°N Reveals Mechanisms for Archaeal Genomic Replication and Maintenance. Schermerhorn KM; Gardner AF J Biol Chem; 2015 Sep; 290(36):21800-10. PubMed ID: 26160179 [TBL] [Abstract][Full Text] [Related]
20. Structural and kinetic analysis of nucleoside triphosphate incorporation opposite an abasic site by human translesion DNA polymerase η. Patra A; Zhang Q; Lei L; Su Y; Egli M; Guengerich FP J Biol Chem; 2015 Mar; 290(13):8028-38. PubMed ID: 25666608 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]