BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

680 related articles for article (PubMed ID: 25501714)

  • 1. Characterization of ion processes in a GC/DMS air quality monitor by integration of the instrument to a mass spectrometer.
    Limero TF; Nazarov EG; Menlyadiev M; Eiceman GA
    Analyst; 2015 Feb; 140(3):922-30. PubMed ID: 25501714
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatic on-line monitoring of atmospheric volatile organic compounds: gas chromatography-mass spectrometry and gas chromatography-flame ionization detection as complementary systems.
    de Blas M; Navazo M; Alonso L; Durana N; Iza J
    Sci Total Environ; 2011 Nov; 409(24):5459-69. PubMed ID: 21978614
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A portable gas chromatograph for real-time monitoring of aromatic volatile organic compounds in air samples.
    You DW; Seon YS; Jang Y; Bang J; Oh JS; Jung KW
    J Chromatogr A; 2020 Aug; 1625():461267. PubMed ID: 32709320
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of a high-performance portable GC with a chemiresistor array detector.
    Zhong Q; Steinecker WH; Zellers ET
    Analyst; 2009 Feb; 134(2):283-93. PubMed ID: 19173051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Limits of separation of a multi-capillary column with mixtures of volatile organic compounds for a flame ionization detector and a differential mobility detector.
    Eiceman GA; Feng Y
    J Chromatogr A; 2009 Feb; 1216(6):985-93. PubMed ID: 19118835
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiplex gas chromatography: an alternative concept for gas chromatographic analysis of planetary atmospheres.
    Valentin JR
    LC GC; 1989 Mar; 7(3):248-57. PubMed ID: 11539794
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ion mobility spectrometry detection for gas chromatography.
    Kanu AB; Hill HH
    J Chromatogr A; 2008 Jan; 1177(1):12-27. PubMed ID: 18067900
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and validation of an automated monitoring system for oxygenated volatile organic compounds and nitrile compounds in ambient air.
    Roukos J; Plaisance H; Leonardis T; Bates M; Locoge N
    J Chromatogr A; 2009 Dec; 1216(49):8642-51. PubMed ID: 19863965
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrothermal Vaporization Sample Introduction for Spaceflight Water Quality Monitoring via Gas Chromatography-Differential Mobility Spectrometry.
    Wallace WT; Gazda DB; Limero TF; Minton JM; Macatangay AV; Dwivedi P; Fernández FM
    Anal Chem; 2015 Jun; 87(12):5981-8. PubMed ID: 25971650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proton-transfer reaction mass spectrometry (PTRMS) in combination with thermal desorption (TD) for sensitive off-line analysis of volatiles.
    Crespo E; Devasena S; Sikkens C; Centeno R; Cristescu SM; Harren FJ
    Rapid Commun Mass Spectrom; 2012 Apr; 26(8):990-6. PubMed ID: 22396037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid separation and quantitative analysis of peptides using a new nanoelectrospray- differential mobility spectrometer-mass spectrometer system.
    Levin DS; Miller RA; Nazarov EG; Vouros P
    Anal Chem; 2006 Aug; 78(15):5443-52. PubMed ID: 16878881
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurement of exhaled volatile organic compounds from patients with chronic obstructive pulmonary disease (COPD) using closed gas loop GC-IMS and GC-APCI-MS.
    Allers M; Langejuergen J; Gaida A; Holz O; Schuchardt S; Hohlfeld JM; Zimmermann S
    J Breath Res; 2016 Apr; 10(2):026004. PubMed ID: 27058460
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultimate detectability of volatile organic compounds: how much further can we reduce their ambient air sample volumes for analysis?
    Kim YH; Kim KH
    Anal Chem; 2012 Oct; 84(19):8284-93. PubMed ID: 22934885
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfabricated differential mobility spectrometry with pyrolysis gas chromatography for chemical characterization of bacteria.
    Schmidt H; Tadjimukhamedov F; Mohrenz IV; Smith GB; Eiceman GA
    Anal Chem; 2004 Sep; 76(17):5208-17. PubMed ID: 15373463
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calibration of mass selective detector in non-target analysis of volatile organic compounds in the air.
    Arh G; Klasinc L; Veber M; Pompe M
    J Chromatogr A; 2011 Mar; 1218(11):1538-43. PubMed ID: 21300364
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tandem differential mobility spectrometry in purified air for high-speed selective vapor detection.
    Menlyadiev MR; Eiceman GA
    Anal Chem; 2014 Mar; 86(5):2395-402. PubMed ID: 24484354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of an ion mobility spectrometer for use in an atmospheric pressure ionization ion mobility spectrometer/mass spectrometer instrument for fast screening analysis.
    Sysoev A; Adamov A; Viidanoja J; Ketola RA; Kostiainen R; Kotiaho T
    Rapid Commun Mass Spectrom; 2004; 18(24):3131-9. PubMed ID: 15565719
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discrimination of bacteria by rapid sensing their metabolic volatiles using an aspiration-type ion mobility spectrometer (a-IMS) and gas chromatography-mass spectrometry GC-MS.
    Ratiu IA; Bocos-Bintintan V; Patrut A; Moll VH; Turner M; Thomas CLP
    Anal Chim Acta; 2017 Aug; 982():209-217. PubMed ID: 28734362
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of low ppm levels of dimethyl sulfate in an aqueous soluble API intermediate using liquid-liquid extraction and GC-MS.
    Zheng J; Pritts WA; Zhang S; Wittenberger S
    J Pharm Biomed Anal; 2009 Dec; 50(5):1054-9. PubMed ID: 19576712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Determination of volatile organic compounds in atmospheric environment].
    Chen HW; Li GK; Li H; Zhang ZX; Wang BG; Li T; Luo HK
    Se Pu; 2001 Nov; 19(6):544-8. PubMed ID: 12545471
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 34.