BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

551 related articles for article (PubMed ID: 25502053)

  • 1. Prioritizing candidate disease-related long non-coding RNAs by walking on the heterogeneous lncRNA and disease network.
    Zhou M; Wang X; Li J; Hao D; Wang Z; Shi H; Han L; Zhou H; Sun J
    Mol Biosyst; 2015 Mar; 11(3):760-9. PubMed ID: 25502053
    [TBL] [Abstract][Full Text] [Related]  

  • 2. LDAI-ISPS: LncRNA-Disease Associations Inference Based on Integrated Space Projection Scores.
    Zhang Y; Chen M; Li A; Cheng X; Jin H; Liu Y
    Int J Mol Sci; 2020 Feb; 21(4):. PubMed ID: 32098405
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting lncRNA-disease associations and constructing lncRNA functional similarity network based on the information of miRNA.
    Chen X
    Sci Rep; 2015 Aug; 5():13186. PubMed ID: 26278472
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Novel Approach Based on a Weighted Interactive Network to Predict Associations of MiRNAs and Diseases.
    Zhao H; Kuang L; Feng X; Zou Q; Wang L
    Int J Mol Sci; 2018 Dec; 20(1):. PubMed ID: 30597923
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NFMCLDA: Predicting miRNA-based lncRNA-disease associations by network fusion and matrix completion.
    Ma Y; Shi Y; Chen X; Zhang B; Wu H; Gao J
    Comput Biol Med; 2024 May; 174():108403. PubMed ID: 38582002
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel miRNA-disease association prediction model using dual random walk with restart and space projection federated method.
    Li A; Deng Y; Tan Y; Chen M
    PLoS One; 2021; 16(6):e0252971. PubMed ID: 34138933
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Novel Model for Predicting Associations between Diseases and LncRNA-miRNA Pairs Based on a Newly Constructed Bipartite Network.
    Zhou S; Xuan Z; Wang L; Ping P; Pei T
    Comput Math Methods Med; 2018; 2018():6789089. PubMed ID: 29853986
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting miRNA-disease associations using improved random walk with restart and integrating multiple similarities.
    Nguyen VT; Le TTK; Than K; Tran DH
    Sci Rep; 2021 Oct; 11(1):21071. PubMed ID: 34702958
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of MicroRNA-Disease Potential Association Based on Sparse Learning and Multilayer Random Walks.
    Yao HB; Hou ZJ; Zhang WG; Li H; Chen Y
    J Comput Biol; 2024 Mar; 31(3):241-256. PubMed ID: 38377572
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neighborhood based computational approaches for the prediction of lncRNA-disease associations.
    Bonomo M; Rombo SE
    BMC Bioinformatics; 2024 May; 25(1):187. PubMed ID: 38741200
    [TBL] [Abstract][Full Text] [Related]  

  • 11. HRGCNLDA: Forecasting of lncRNA-disease association based on hierarchical refinement graph convolutional neural network.
    Peng L; Yang Y; Yang C; Li Z; Cheong N
    Math Biosci Eng; 2024 Feb; 21(4):4814-4834. PubMed ID: 38872515
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of lncRNA-disease associations via an embedding learning HOPE in heterogeneous information networks.
    Zhou JR; You ZH; Cheng L; Ji BY
    Mol Ther Nucleic Acids; 2021 Mar; 23():277-285. PubMed ID: 33425486
    [TBL] [Abstract][Full Text] [Related]  

  • 13. miRDDCR: a miRNA-based method to comprehensively infer drug-disease causal relationships.
    Chen H; Zhang Z; Peng W
    Sci Rep; 2017 Nov; 7(1):15921. PubMed ID: 29162848
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SPMLMI: predicting lncRNA-miRNA interactions in humans using a structural perturbation method.
    Xu M; Chen Y; Lu W; Kong L; Fang J; Li Z; Zhang L; Pian C
    PeerJ; 2021; 9():e11426. PubMed ID: 34055486
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GBDTLRL2D Predicts LncRNA-Disease Associations Using MetaGraph2Vec and K-Means Based on Heterogeneous Network.
    Duan T; Kuang Z; Wang J; Ma Z
    Front Cell Dev Biol; 2021; 9():753027. PubMed ID: 34977011
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Network based integrated analysis of phenotype-genotype data for prioritization of candidate symptom genes.
    Li X; Zhou X; Peng Y; Liu B; Zhang R; Hu J; Yu J; Jia C; Sun C
    Biomed Res Int; 2014; 2014():435853. PubMed ID: 24991551
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Network analysis of differential expression for the identification of disease-causing genes.
    Nitsch D; Tranchevent LC; Thienpont B; Thorrez L; Van Esch H; Devriendt K; Moreau Y
    PLoS One; 2009; 4(5):e5526. PubMed ID: 19436755
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of disease genes using tissue-specified gene-gene network.
    Ganegoda G; Wang J; Wu FX; Li M
    BMC Syst Biol; 2014; 8 Suppl 3(Suppl 3):S3. PubMed ID: 25350876
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A fast and high performance multiple data integration algorithm for identifying human disease genes.
    Chen B; Li M; Wang J; Shang X; Wu FX
    BMC Med Genomics; 2015; 8 Suppl 3(Suppl 3):S2. PubMed ID: 26399620
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chromosome preference of disease genes and vectorization for the prediction of non-coding disease genes.
    Peng H; Lan C; Liu Y; Liu T; Blumenstein M; Li J
    Oncotarget; 2017 Oct; 8(45):78901-78916. PubMed ID: 29108274
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.