BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 25502362)

  • 21. Effect of pH on stability and plasmonic properties of cysteine-functionalized silver nanoparticle dispersion.
    Csapó E; Patakfalvi R; Hornok V; Tóth LT; Sipos A; Szalai A; Csete M; Dékány I
    Colloids Surf B Biointerfaces; 2012 Oct; 98():43-9. PubMed ID: 22652358
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Resonance Rayleigh scattering method for determination of 2-mercaptobenzothiazole using gold nanoparticles probe.
    Parham H; Pourreza N; Marahel F
    Spectrochim Acta A Mol Biomol Spectrosc; 2015; 151():308-14. PubMed ID: 26143323
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Picric acid capped silver nanoparticles as a probe for colorimetric sensing of creatinine in human blood and cerebrospinal fluid samples.
    Parmar AK; Valand NN; Solanki KB; Menon SK
    Analyst; 2016 Feb; 141(4):1488-98. PubMed ID: 26793795
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Green synthesis of chondroitin sulfate-capped silver nanoparticles: characterization and surface modification.
    Cheng KM; Hung YW; Chen CC; Liu CC; Young JJ
    Carbohydr Polym; 2014 Sep; 110():195-202. PubMed ID: 24906746
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spectroscopic investigation of S-Ag interaction in omega-mercaptoundecanoic acid capped silver nanoparticles.
    Tripathy SK; Yu YT
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 May; 72(4):841-4. PubMed ID: 19167270
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chiral recognition of the carnitine enantiomers using rhodamine B as a resonance Rayleigh scattering probe.
    Yang J; Tan X; Zhao Y
    Chirality; 2018 Nov; 30(11):1173-1181. PubMed ID: 30230616
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Gold and silver nanoparticles in resonance Rayleigh scattering techniques for chemical sensing and biosensing: a review.
    El-Kurdi R; Patra D
    Mikrochim Acta; 2019 Sep; 186(10):667. PubMed ID: 31485856
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In situ photoreduced silver nanoparticles on cysteine: an insight into the origin of chirality.
    Liu H; Ye Y; Chen J; Lin D; Jiang Z; Liu Z; Sun B; Yang L; Liu J
    Chemistry; 2012 Jun; 18(26):8037-41. PubMed ID: 22639423
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Highly sensitive detection of chromium (III) ions by resonance Rayleigh scattering enhanced by gold nanoparticles.
    Chen M; Cai HH; Yang F; Lin D; Yang PH; Cai J
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jan; 118():776-81. PubMed ID: 24144831
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Colorimetric recognition of aromatic amino acid enantiomers by gluconic acid-capped gold nanoparticles.
    Yang J; Li X; Du Y; Ma M; Zhang L; Zhang J; Li P
    Amino Acids; 2021 Feb; 53(2):195-204. PubMed ID: 33432455
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Colorimetric chiral recognition of D/L-phenylalanine based on triangular silver nanoplates.
    Wu P; Hu F; Wang R; Gao L; Huang T; Xin Y; He H
    Amino Acids; 2018 Sep; 50(9):1269-1278. PubMed ID: 29961142
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Silver nanoparticle-treated filter paper as a highly sensitive surface-enhanced Raman scattering (SERS) substrate for detection of tyrosine in aqueous solution.
    Cheng ML; Tsai BC; Yang J
    Anal Chim Acta; 2011 Dec; 708(1-2):89-96. PubMed ID: 22093349
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spectroscopic studies on the interaction between novel polyvinylthiol-functionalized silver nanoparticles with lysozyme.
    Ali MS; Al-Lohedan HA; Rafiquee MZ; Atta AM; Ezzat AO
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Jan; 135():147-52. PubMed ID: 25062060
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optical ascorbic acid sensor based on the fluorescence quenching of silver nanoparticles.
    Park HW; Alam SM; Lee SH; Karim MM; Wabaidur SM; Kang M; Choi JH
    Luminescence; 2009; 24(6):367-71. PubMed ID: 19424962
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fluorescent and Colorimetric Dual-signal Enantiomers Recognition via Enzyme Catalysis: The Case of Glucose Enantiomers Using Nitrogen-doped Silicon Quantum Dots/Silver Probe Coupled with β-D-Glucose Oxidase.
    Yi Y; Liu L; Wu Y; Zhu G
    Anal Sci; 2021 Feb; 37(2):275-281. PubMed ID: 32863333
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microwave-assisted green synthesis of ultrasmall fluorescent water-soluble silver nanoclusters and its application in chiral recognition of amino acids.
    Liu T; Su Y; Song H; Lv Y
    Analyst; 2013 Nov; 138(21):6558-64. PubMed ID: 24029964
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Highly sensitive resonance light scattering bioassay for heparin based on polyethyleneimine-capped Ag nanoclusters.
    Tang Y; Zhang Y; Su Y; Lv Y
    Talanta; 2013 Oct; 115():830-6. PubMed ID: 24054670
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Highly sensitive surface-enhanced Raman scattering sensing of heparin based on antiaggregation of functionalized silver nanoparticles.
    Wang X; Chen L; Fu X; Chen L; Ding Y
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):11059-65. PubMed ID: 24107222
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Surface mediated chiral interactions between cyclodextrins and propranolol enantiomers: a SERS and DFT study.
    Stiufiuc R; Iacovita C; Stiufiuc G; Bodoki E; Chis V; Lucaciu CM
    Phys Chem Chem Phys; 2015 Jan; 17(2):1281-9. PubMed ID: 25420457
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Simple and Sensitive Discrimination of Amino Acids with Functionalized Silver Nanoparticles.
    He Y; Liang Y; Yu H
    ACS Comb Sci; 2015 Jul; 17(7):409-12. PubMed ID: 26086733
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.